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For 2 < N < o0 let By be the braid group on N strands; By, with generators
01,02,...,0;,... (1 < i < N), is given by the relations o,6;,,0; = 6;,106;0,4, and
0,6, = 6;0; (j > i+ 1). Two basic group actions of By are as follows. By acts on
the free group (F, o) on generators {#; : 0 < i < N} by (B;_1)" = hi_1oh; o hl.:ll,
(hi)* = hi—y, (h;)7 = h; for j #i—1,i, and (uov)” = (u)% o (v)” [1]. If (G,0) is
any group, By acts on G" by ({go,...sGi—1,Gis- -+ Gks-- k<N )" = {go,....(gim1 © g; ©
97 s Gictse s Gho- - Jien (see [24, p. 157]).

More generally, the braid groups act, or partially act, in various ways on certain
left distributive algebras and their direct powers. A left distributive algebra is a set
with a binary operation on it satisfying the left distributive law a(bc) = (ab)(ac) (for
example, for a group (G, o), the conjugation operation gh = gohog~' satisfies the left
distribution law). Brieskorn [2] expressed a number of actions of By as generalizations
of the second of the above examples: if € is an automorphic set (a lefi distributive
algebra in which left multiplication by any element is bijective), then the condition
(€O s CimlsCisenvs Choaer Y% = {COpen s (Cim1Ci ), Cic)y o5 Cs--.) induces a group action
of By on V. See [2, 3, 16, 18, 27, 29] for some examples of this related to knots
and braids.

For k a cardinal, let ./ be the free left distributive algebra on k many generators.
Then 7, is not an automorphic set, but it does satisfy left cancellation, as follows.
For € any left distributive algebra, b, ¢ € €, define

b<Lc <« forsome by,by,....b, €6, ¢ = (((bbo)b1) - bu_1)by .

Let o = 7). Then < linearly orders .7 [4-6, 21]. It follows that .o/ satisfies left
cancellation. These and similar facts about the .«/,’s (x > 1) are recalled in Section 1.
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For & a left distributive algebra satisfying left cancellation, as noted by Dehornoy
in [6], the action of By on %" is still a partial group action. That is, for ¢ in 6",
the equation d® = has at most one solution, so & s unique when defined. Also
needed to check that this action is well defined is a result of Garside [14] (see proof of
Theorem 2.7 below). Write w = {0, 1,2,...}. Dehornoy ([6, Theorem 7.6, Theorem 3.1
below]) proved, by means of the partial action of B, on .&/”, that the linear ordering
< on .« induces a linear ordering < on B... For a combinatorial characterization of
<, define, for x € B, ¢ the identity of B, ¢ < « if and only if x can be represented
as a nonempty braid word w = aijf h.. o;‘,L' such that the generator with least subscript
appearing in w occurs only positively. Then for %, f € B, & < f holds if and only
ife < a7 !'B. Soi < j implies o; > o; and, for example, O’I-_IO',-H <e< J;rll 0.

Let B, be the set of positive braids in By-braids which can be represented by a
word (possibly empty) in which the generators occur only positively. Thus Dehornoy’s
ordering extends the notion of positive braid: for 2 < N < oo, B}, is a proper subset
of {x € By : ¢ < a}. The ordering is preserved under left translations; this yields, as
remarked by Larue, a combinatorial proof that the braid groups are torsion free.

In this paper a result about a free left distributive version of Artin’s group action
is proved; this is then used to derive a result about <. Let xq,x1,...,x,,... be the
generators of .«Z,. Define x]" = x;_y, x{" | = x;_1x;, and x;.” =x; for j #i—1,i. This
does not induce a partial action of B on 7, ((xox0)” = (x1x0)°" for example). We
define a subset of .27, — those members of .7, which can be expressed in “decreasing
division form”. Decreasing division form (DDF) is defined with the aid of a natural
linear ordering < on .¢7,.

Theorem. The action of the generators given above induces a partial group action
of B, on DDF. This action is order preserving, faithful, and for ull w € DDF and
%€ B, w=<w

To define DDF, as in the case of the normal forms of [21, 22], we will not work
in o7, but in 2, the result of enlarging .«7,, to include a composition operation, and
work with the DDF of that larger algebra.

Elrifai and Morton [12] define a partial ordering on B,.: « is less than f in their
sense if and only if there are y and J in B, at least one of y, ¢ different from ¢, with
f = yad.

Theorem. The ordering < extends the ordering of Elrifai and Morton. For N finite,
By, is well ordered under <.

The parts of Section 1 needed for Sections 2 and 3 are Theorem 1.5 and basic
properties of left distributive algebras (Proposition 1.1). Theorem 1.5 states the linear
ordering on free left distributive algebras [4-7, 21, 22] in a general form. It is the
version in [7] generalized to the 2, ’s; it follows from Theorems 1.3 and 1.4. Theorem
1.3 was derived from large cardinals in [21], and without them in [6]; a short proof is
given in [19]. A short account of parts of Theorem 1.4 may be found in, e.g., [9].
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We recall some facts from [4-7, 21, 22], and related results.

In a language with two binary operation symbols - and o, let, writing uv for u-v, 2 be
the set of laws {(ach)oc = ao(boc), (ach)c = a(bc), a(boc) = aboac, ach = aboa}.
Then X implies the left distributive law (a(bc) = (a o b)c = (ab o a)c = ab(ac)).

Two models of X are (G,o,-) where G is a group, o is the group operation and
- is conjugacy, and, from set theory, (&;,0,-), where for 4 a limit ordinal &, is the
set of nontrivial elementary embedding j : (V,,&) — (V;,¢&), o is composition, and
Jok=U,_,j(knV,). Let 2, for x a cardinal, be the free algebra satisfying Z on
generators {x, : o < k}, and let 2 = 2,.

Let 4, (respectively, P,) be the set of terms in the variables xg, x,...,%,,... (¥ < k)
using the operation - (respectively, - and o). An example of such a term is (x>x;) o
(x2(x3 0xp)). Then &, = A,/ =4 and #, =P,/ =, , where for u,v € 4,., u=, v
iff v 1s the result of repeated substitutions in u using the left distributive law, and =,
is similarly defined by substitutions using X.

Let € be an algebra satisfying X (or a left distributive algebra, in which case delete
the parts of the following definitions involving o).

For ¢y, cy,...,cn € 6, write coc - - - ¢, for (((coer)e2) - - - )e, and write coey -« - €00,
for ((((cocy)ca) - )ep—1)ocy. Let u = coey - - ¢y *c, mean that u = cocy -+ ¢, Or U =
cocy -+ - cp—10c,. Then for any u € 2., u can be written in the form pop; -+ py—1 * py
where pg is a generator.

For u,v € €, say that u is a left component of ¢ (u < v) if there are uy,...,u, € ¢
with v = uuguy -+ - u,—1 * 4,. Then < is a transitive relation on %.

We summarize some facts (%4 is still an arbitrary left distributive algebra or an
algebra satisfying 2).

Proposition 1.1. (i) For p € 2, there is a unique x such that for some py,...,pi_| €
Py P =XyPo " Pi—2 * pi—1; Write x, = L(p).

(i1) For a € o, there is a unique o and n such that for some ay,...,a, | € .o ,.
a = ao(a|(---(a,_1x4))); write x, = R(a), n = depth a.

(iii) For w € P, there is a unique n such that for some ay,...,a, € Ay, W =,
ag ©---0day.

() If a,b,c € €, b < ¢, then ab <y aob <y ac.

(v) For w € P,, let a cut of w be a ¢ € P, gotten by truncating w at an occurrence
of a variable in w. Thus the cut of xpxi(x2x) ¢ (x1x3 0x;)) at the last occurrence of
x1 IS xpx1(x2x) o x1). Then if ¢ and d are cuts of w with ¢ strictly to the left of d.
then ¢ < d.

Theorem 1.2 (Laver [21]). For a,b,ay,...,ay, bo,...,b, € A,
(i) apo- - -0ap, =, byo- - oby if and only if ag(a\(- - - (@mx2))) =, bo(B1(- - - {bmxx)))
for somelall generators x,.
(1) a=yp, b if and only if a =4, b.
(iil) a < b as members of P, if and only if a < b as members of A,.
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The proof in [21, Section 1], for k = 1 works without change for arbitrary x. By
(i), identify .o/, as a subalgebra of 2, (restricted to -). Write = for =, , = .

Say that 4, a left distributive algebra or an algebra satisfying X, is irreflexive if
for all ¢ € €, c<L ¢. Common examples of left distributive algebras (such as groups
under conjugation, vector spaces where v-w = tv 4+ (1 — t)w (¢ a fixed scalar)) are
idempotent and thus not irreflexive.

Theorem 1.3 (Laver [21], Dehornoy [6] in ZFC). For every cardinal k, o, and P,
are irreflexive.

To prove this, note that if there exists an irreflexive left distributive algebra, then
the .«/,’s are irreflexive, and the 2,’s are casily seen to be irreflexive also (if p €
Py, p = pPo-- Pn—1 * Pn, and x; = L(py), then px, € o, and px, <_ px,
would hold). In [21] it was shown that the algebras &, mentioned above are ir-
reflexive, and, for j € &, that the subalgebra of &; generated by j under - (re-
spectively, under - and o) is isomorphic to ./ (respectively, 2). That there exists
a A with & # § is a large cardinal axiom; nonempty &;’s cannot be proved to
exist in ZFC (some facts about the &,’s appear in [8-11, 17, 21, 23, 25, 26, 28,
30]). Then Dehornoy [6] proved without using large cardinals that a certain left dis-
tributive algebra on the braid group is irreflexive, giving a proof of Theorem 1.3
in ZFC. Larue [19] has given a shorter proof of the irreflexivity of the algebra in
[6].

For x = 1, a stronger statement holds: < linearly orders .o/ and #. This was
first proved in [21] (with the irreflexivity part coming via the large cardinal axiom).
Dehornoy [4, 5] around the same time proved, independently and by a different method
that for every a,b € o/, a <p b or b <; a (from Theorem 1.4(iii) below). Thus he
was only missing irreflexivity for the proof of the linear ordering. We summarize
Dehomoy’s method, and some applications of it using irreflexivity, in Theorem 1.4.
We summarize the method of [21, 22] in Theorems 1.6 and 1.7. Either of these two
methods, combined with the ZFC proof of Theorem 1.3 in [6], give a proof in ZFC
that < linearly orders .« and 2. This linear ordering is stated here in a general form
in Theorem 1.5.

For u,v € A, write u — v to mean that v can be obtained from u by a sequence of
substitutions, each of which replaces a subterm of the form a(bc) by (ab)(ac). Then
1 — v implies u = v. Note that if uou; ---u, — v, then v is of the form vov; - - vy,
where for all i < m there is a j < n with wou; ---u; = vovy -+ - 0.

i

Theorem 1.4 (Dehornoy [4-71). (i) ¥, is confluent, that is, if a,b € A, and a = b,
then for some ¢ € A, a — ¢ and b — c.

(ii) (From (i), Theorem 1.3, and the remark preceding this theorem) For w €
A, {u€ oA, u< w}is linearly ordered under <.

(iii) If a,b € A, then either a,b — c for some c, or for some ¢ = cocy -+ -cn € A with
n > 0, either a— cyand b — c or b — ¢y and a — c.



R Laver/Journal of Pure and Applied Algebra 108 (1996) 81-98 85

The following remark about 2, will be used below: if r <; wx in Z, and x 1s a
generator then ¢ <; w. Namely, for some generator y, ty <; wx, and ty,wx € &/,
One has then that ¢y is a cut of some word for wx. The latter word, by induction on
derivations, must be of the form wq(w (- - - (wpx))) where wyowy o---w, = w, from
which it follows that ¢ <; w.

For p, g € ?, say that p and ¢ have a variable clash if there are ay,...a,_1 € 4,
(n = 0 allowed) and x, # xg with ag(a1(- - (@,—1x5))) <L p and ag(a;(- - - (an--1xp)))
<L g. Note that ag(ai(- - (@—1xx))) <L aolai(---(an—1xp))) cannot hold. Namely,
they cannot be equivalent by Proposition 1.1 (ii), and if ap(ai(: - (@n—1%4))) <o
ag(ai(- - - (an—1xg))), then by the above remark ap(a(- - (an-1%2))) <L apoayo--- 0o
ay-,, which contradicts irreflexivity. It follows that if p and ¢ have a variable clash
then p < ¢ cannot hold: by Theorem 1.4 (ii) one would have ap(a|(- - (@,—1x,)))
<L-comparable with ag(ai(- - - (a,—1xp))).

If < is a linear ordering of the generators, say that ¢ dominates p (with respect
to <) in a variable clash if there are a;’s, x,,xg as above with x, < xg (we say that
the pair {(ao(a1(- - - (@n—1x2))), aolai(: ~-(a,,,1x,5)))> witnesses p < ¢). Observe that if
g dominates p in a variable clash, and p <| p’,q <, ¢/, then ¢’ dominates p’ in a
variable clash. Extend < to a relation < on #, by

P =q< p <pqorq dominates p in a variable clash.

Dehornoy [7] derived from Theorems 1.3 and 1.4 that < linearly orders .«/,. We
indicate the proof. To see, for example, that if u, v € o/,, then either u = v, u < v,
v <y u or u and v have a variable clash, let ¥ and v be given by representatives
(also called u and v) in 4. Let 4 and § be the members of 4 obtained from u and
v by replacing all occurrences of variables by xy. By the linearity of < on .&/ we
have, say, 4 <p 0. By Theorem 1.4 there are ry,#(,...,7, € 4 with ¥ — ror| ---r, and
4 — ryry---r;, where i = 0 or n. Applying the same substitutions to u and v yields
U — SoS1 Sy, U — toty -+ ;. If for all £ < i, s, = t,, then u <, v and we are done.
Otherwise for some least 7, s, # t, (but §, = {, = r,). This implies, by Proposition
1.1(v) that there is a variable clash between p and q. A checking of cases then gives
transitivity of < on .27, and the irreflexivity of < on o7, is derived from confluence
as above using the irreflexivity of < on ..

We will check that < also linearly orders #,. This may be proved by deriving (in
the manner of Theorem 1.4(i)) a confluence result for 2, (if p,q € Py, p = ¢, then for
some r € P,, p,q — r, where in the definition of —, the rules (aob)oc <+ ao(boc),
(aob) — a(bc), a(boc) — (aboac), acb — aboa are allowed) and applying it
together with Theorem 1.3. A shorter proof is to derive the result from the linearity
of < on &7,.

Theorem 1.5. Given a linear ordering < on {x,:a < k}, extend it to a relation <
on P, as above. Then < linearly orders P, extends <y, and if p,q,r € P, with
q < r, then pq < poq < pr (whence pg= pr<q=r, pgq < pr<q=<r).



86 R. Laver ! Journal of Pure and Applied Algebra 108 (1996) 81-98

Proof. Let <7, be the free left distributive algebra with generators {x, : & < x}U{x},
where x is a new variable, and let < on &7, be defined as above from the given
ordering on {x, : 2 < x} together with x < x, (all ).

Lemma 1. v < w in &, < wx dominates vx in a variable clash in .

Proof. Let v =gy o---0a, with each a; € &/,

(=) If v < w, then w = vy v, * v, for some vy,...,v, € P, and, letting
xy = L(vg), vx = ap(a;(---a,x)) and ag(a(---(asxy))) <. wx, and if w dominates v
in a variable clash, then wx so dominates vx.

(<) Suppose for variables z < r from {x, : a < x} U {x} that
5 =bo(bi(- - (byz))) <L vx, t = bo(b1(- - (byr))) <L wx.

Then by o by o -+ o b, < v; moreover, since x < r, t # wx so t < w. Thus
if s < v, s and r witness that v < w. The other case is where s = vx, whence
v="bgo--ob, <y bo(b1(---(byr))) =1t <L w, giving v < w. []

Lemma 2. If u,v,w in P, u < v < w, then u < w.

Proof. By Lemma 1 we have {ag(a (- - - (a,j))),a0(a:(- - - (a,k)))) witnessing ux < vx,
and (bo(b1(- - - (b)), bo(b\(- - - (bnt)))) witnessing vx < wx. Since x does not occur
in u or v, the a;’s, b;’s belong to /.. To show wx dominates ux in a variable clash,
write @=ag0---0ay, b=bgo---ob,. Since both @k, b/ < vx, by Theorem 1.4(ii)
@k and b/ are < -comparable.

Case 1: @k = b¢/. Then @ = b and (d@j,ar) witnesses ux < wx.

Case 2: Gk < B/. Then @k <. b. Thus @k < bt <, wx, so (d@j,dk) witnesses
ux < wx.

Case 3: bf <, @k. Then similarly bt <L @ <L dj <p ux, and (5/, 5t> witnesses
ux < wx. [

Lemma 3. For v,w € P, exactly one of v <w, v=w, w < v holds.

Proof. By the linearity of < on .«7/ either vx = wx or, say, vx < wx. If vx = wx, then
v = w. If vx < wx, then either vx < wx or wx dominates vx in a variable clash. Since
vx < wx cannot hold—it implies tx <; w but x does not occur in w—assume {(d@k, @)
witnesses vx < wx. Since / # x, @/ <p w, so if @k < v, then (dk,d/) witnesses
v < w. The other case is @k = vx, whence v =d < @/ <. w, so v < w.

Finally, < is irreflexive on 2, : for p € 2, p £ p since px £ px in /). Thus at
most one of v < w, vt = w, w < v holds.

This proves the linearity of <, and the other statements in the theorem are immediate
from that and the definition of the ordering. O

The division form of [21, 22] is a way to determine, for u,v € 2, which of u <
v, u = v, v <_ u holds, by a type of lexicographic comparison. The remarks about
it (from here through the end of this section) are included for completeness and for
comparison with the next section, which is a self-contained version of division forms
for the case of 2.
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Define, for p € #, a p-normal term to be a product expressed in the form pop, - --
Du_1 * Pu, Where po = p, pis2 <L popi--- p; forall i, and if * = o and n > 2 then

Pn <L Pop1-- Pn-2

Theorem 1.6 (Laver [21, 22]). (i) For all p,u € 2, if p < u then u is representable
uniquely as a p-normal term py--- py—_1 * Pp.

(i) Moreover, let (T,£) be the rooted, P-labeled tree such that ¢ (root of T) = u,
such that £(t) <_ p implies t is a maximal node of T, and such that p < ((1)
implies, letting po--- pn—1 * pa be the p-normal term equalling £(t), t’s immediate
successors are to, ..., t, with £(t;) = p;. Then T is finite.

The uniqueness part relies on irreflexivity. The term for v given by part (ii) (in a
language with a symbol for each ¢ < p) is called the p-division form of w.

For p,q € # define the (nonnegative) iterates I,(p,q) of (p,q) by I(p.q)
g, 1i(p,q) = p. L+2(p,q) = Lii(p, Qi p, q). Writing 1,(p,q) = I,, then [,. o], =
p ogq by iterating the law acb =aboa.

If pu € 2, define the p-associated sequence S,(u) = S(u) of u as follows. If
u <y p, S(u) = {(u). If the p-normal product equalling u is uou|,...u, (so ug = p),

then S(u) = {ug,u,...,u,). If the p-normal product for u is wgu, ---u,_ o u,, then
S(u) is the infinite sequence (ug,uy,...,u4;,...), where for i > n, u; = uouy - u;_,.
That is, for i > n, u; = Li_,(uguy - - - Uy—y, Up).

Theorem 1.7 (Laver [21, 22]). For p,u,v € 2, u <y v if and only if Sp(u) is lexi-
cographically less than §,(v).

ptThat is, S,(«) is a proper initial segment of S,(v), or S,(«) and S,(v) differ at
some first coordinate i and u; < v;. To derive that < linearly orders 2, let p be
the generator xo of #. For u,v € 2, whether or not u < v is decided by comparing
S(u) and S(v), and then if S(x) and S(v) first differ at coordinates u;,v;, comparing
S(u;) and S(v;), etc. One can check that this procedure ends in a finite number of
steps.

If u= pop1-- pn—i * pn 1S a pp-normal term, then it is seen that for each i < #,
pit1 1s the < greatest member g of 2 with pg--- p;g < v (see e.g. Lemma 2.1(1)
below). Theorem 1.6(i) thus implies that a type of division algorithm for # terminates
in a finite number of steps. Namely, if 1 < v let uy be greatest with uuy <, v, and if
uug, uouy # v let uy be greatest with wuou; <g v, etc. Then for some n, v = uugu; - - - u,
OF U= Ullguy -+ Up_1 O Uy.

From here on, < is the linear ordering on Z,, induced by the ordering x¢ > x| >
X3 > -+ >Xx, > ---, as in Theorem 1.5.
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For p € 2, a p-normal term in 2, is a term of the form pop; - - - py—1 * pu, Where

po=p,piva X popr---p; forall i <n—2, and
f x=ocandn>2, p, < pop1-+ puz

A normal term is an x;-normal term for x; a generator. We will blur the distinction,
when no confusion should arise, between such terms and the members of Z,, they
represent.

For a pg-normal term pgp;--- pn_1 * py, define its associated sequence S(pop; - -
Pn—1% pp) to be {po, p1,..., pa) if * = -, and if * = o, to be the infinite sequence
{(Pos P1s---» Pir-.-) where for all i > n, p; = pop1--- pi—2. If {po, pr1,..., pi) is
an initial segment of S(po--- pu—1 * pn), then popi---p; < popi -+ Pyt * Pp; In
the case * = o and i > n this follows from i + 1 — »n applications of the a o b
= aboa law.

We have that for any initial segment {py, ..., p;) of an associated sequence, pg - - - p;
is a pg-normal term. Note that for py € 2, distinct pg-normal terms cannot have the
same associated sequence: if the sequence is finite, this is immediate, and if it is infinite,
say (po, Pis---, pi- ), then it equals S(pop, - - - pp—1 © p,) Where either n = 1 or there
is an i with p; < popi--- pi—2 and n is the greatest such i.

If po -+ Pn_1 * Pns Go* " qm—1 * qm are po-normal terms (so pg = go) define
DO Pne1*Pn <Lex 0 - Gm—1%qm if either S(po -+ pp—1* p,) 15 a proper initial seg-
ment of 5(qo - - - gm—1%*qy) or there is an i with p;,g; coordinates of S(py - - pu—1* pn),
S(qo - - gm—1 * qm), respectively, such that p; =¢g; (j <) and p; < q;.

Lemma 2.1. (i) If p= po- - pp—1% pn is a py-normal term, 0 < j < n, and p; < g;,
then p < po-- pj-14;.

G If p=po-- Pror1xpnand g =qo- - qm—1*qm are po-normal terms (so po = qo),
then

P =g S(p) <rex S(9)

Proof. (i) Let S(p) = {po, p1,.-.), finite or infinite. Write p; = ¢; (i < j). We are
done if for some », pg--- p, is dominated by go---¢; in a variable clash, so assume
that it does not happen. Then in particular p; < g;. We claim that

forall i >j, po--- pim10pi <L qoq)-""q;-

For the case i = j use p; <1 g; and po--- pj—1 = qo---q;—1. Suppose i > j and the
claim is true for i. Then qo---g; = (po---picr o pi)ro--r—1 xr ZL (po--- Pi—1 ©
piro = po--- pici(piro) = po--- ppo--- pi—1ro). We have piy1 =< po--- pi-1.

Case 1: p;,| dominated by pg--- p;—1 In a variable clash. Then, as we are assum-
ing cannot happen, po--- p;p;y1 is dominated by pg--- pi(po--- pi—1), whence by
go- - q;, In a variable clash.

Case 2: piry = po--- pi—1- Then go---q; = po--- pi{po-- piciro) =(po- - pi©
Pis1 o >L Po--* Pi© Piyl-
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Case 3: pir1 <v po--> pi—1. Then qo---q; > po--- pi(piv1s) (for some s) >
Po Pi© Piyl-

The claim suffices for part (i) of the lemma, as there is an i > j such that p =
Po- - pi-t* pi <L qo- g

(ii) (<) Let S(p) = {po, p1,---), S(q) = {go.q1....), with po = go. If S(p) is a
proper initial segment of S(g), then S(p) = {po, p1---, pr) S(@) = {(po, Prs---» Pr,
gr1..)and p = po--- pr <L po--- prgry1 <p g. So assume for some least j with
0 < j < n that p; < ¢;. Then we are done by part (i).

(=) Since different normal terms p and g have different associated sequences,
S(p) = S(q) implies p = g. So we are done by the (<) direction and linearity
of <. O

Call a pg-normal term pg--- p,— * p, normal if py is an x;.

In the language of - and o with a constant symbol for each x;, define the no-
tion of a division-form term (with respect to <) inductively as follows: For n > 0,
PopP1 - Pn—1 * pn is a division form term iff py is an x;, pi,..., pn are division form
terms, and pop) -« - pa—1 * pu is normal. Let DF = {p € #,, : p has a representation
as a division form term}. By Lemma 2.1 the representation is unique. If p,q € DF,
then by Lemma 2.1 the question whether p < ¢q, p = ¢q or ¢ < p is determined by a
lexicographic comparison of the division form terms representing p and gq.

We define the notion of “decreasing division form” mentioned in the introduction.
DDF consists of those members p of DF such that every component ab or aob of the
DF term representing p satisfies b < a. Equivalently, call a normal term pg - -+ p,_1*p,
decreasing normal if, in the definition of normal, additionally p; < py, and define a
DDF term as in the preceding paragraph, replacing “normal” by “decreasing normal”.
So a DDF term is either an x; or a term of the form pop)--- p,— * p, for some
n > 0, where po is an x;, p1 < Po, Piv2 = Po*" " Pis Pn < Do+ Pn—2 if B > 2 and
*x = o, and each p; is a DDF term. Then DDF = {p € 2, : p has a representation
as a decreasing division form term}.

Similarly define p-DF and p-DDF for p € 2, as follows. We want the p-DF,
p-DDF terms r to have first coordinate p if p <_ r; otherwise the first coordinate
will be an x;. So define, for ¢ € %, a normal term for ¢ with respect to p to be
either a p-normal term ¢ = ppy--- pp—1 * pp, OF a normal term q = XU - - - Up | * Uy
where p 41 ¢. Then the notion of a p-division form ( p-DF’) term, in the language with
constant symbols for the variables and a constant symbol for p, is obtained hereditarily
from the notion of a normal term for ¢ with respect to p, in the same way that the
notion of a DF-term is obtained from the notion of a normal term. Let p-DF = {q : ¢
has a representation as a p-DF term}. Similarly define a decreasing normal term for
q with respect to p, a p-decreasing division form ( p-DDF') term, and p-DDF. Then
if p is an x,, p-DF = DF, p-DDF = DDF.

So there are two types of sequences used in building up p-DF terms. The next lemma
expresses how to lexicographically compare two such terms u = ugu - - - 4,1 * u, and
U == 0gl) + -+ Up—) * Uy to determine whether u < v.
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Lemma 2.2. (i) If uy = vy, then u < v is determined as in Lemma 2.1.

(1) If up = x,, vo = x,y (n £ m), then u < v if and only if n > m.

(iii) If up = x», v9 = p, and x, # p (Whence u #. p), then u < v if and only if
U= p.

Proof. (i) and (ii) are immediate. For (iii), if # < p, then since u ?1 p, p dominates
u in a variable clash, thus v dominates # in a variable clash, so u < v.

For p € #,, define Var(p) = {x, : x, occurs in p}.

Lemma 2.3. (i) If p € DDF, L{p) = x,,, then Var(p)C{x,, : m > n}.

(ii) If p € DDF, x,, = p, then Var(p) C{x; : k > m}.

(iii) If g € p-DDF, then every proper subterm of the p-DDF term representing q
is < gq.

Proof. We have that (i) implies (ii), since for L(p) = x, we must have n > m.

(i) is proved by induction on DDF terms; suppose (i) is true for all subterms of
p = pop1-- pi1 * p;, where py = x,. Since x, >~ pi, x, > L(p1), and since for
i>2, pi X po--- pi—2, L(p;) X xn; done by induction.

For (iii) (by induction on p-DDF terms) if n > 0 and ¢ = pop1--+ Pn_1 * Pn,
then pop;---pn_1 < ¢, and if n = 1, then p, < po < g, and if n > 1, then
DPn =X po---Pn2<gq U

Theorem 2.4. Suppose a,b € {x, : n < w}, a = b. Then if p € DDF, then p €
(aob)— DDF.

Proof. The method is similar to those in [21, 22]. Let |g| (respectively |¢|%°?) be the
DDF-term (respectively, the a o b-DDF term) representing ¢, if one exists. Recall that
an a o b-DDF term pyp;--- pi—1 * p; is either a decreasing (@ o b)-normal term (so
po = (a o b)) or a decreasing normal term (so pp is an x;), where in the latter case,
X;p1--- pi—1 * p; 21 aob. Technically speaking, a o b is either a normal-DDF' term
of length 2 or an (a0 b)-DDF term of length 1; no problems will arise by identifying
these two terms.

If p= po---pn and q are (a o b)-DDF terms define ¢ < p if either » = 0 and
qg=<po,orn>0and g < po-- pu_i.

Lemma 1. If p,q are (acb)-DDF terms, then q < p iff the term pq is an (acb)-DDF
term. Moreover, g < p implies pg > p and |p o q|®? exists.

Proof. If p is the (a o b)-normal term (a o b)p; - p,—1 Py, then clearly | pg|*°t =
pg > p. Writing ¢ = p,(, we have that |(p o g)[*°® = (a0 b)pi -+ pi— © p;, where
i < n+1 is greatest such that p; < (@aob)p; -+ pi—» (i = 1 if no i satisfies that
condition).
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If p = xxq1---qn the same statements obtain, where it is checked that in exactly
the case x, = qo = a, q = b, g = qo---qi—2 for 2 < i < n+1, g1 = g, that
|poq|®™ = aob; otherwise |po g|*®® £ aob. This proves the lemma. O

Definition. For p,q € (a o b)-DDF define a relation p 1 ¢, by induction first on the
(a o b)-DDF term for p, then on the (a o b)-DDF term for ¢ (p 1 g will guarantee
that | pg|“®® and |p o g|*® exist).

(aYIf p=acbhor pisanx;, then p Jg if and only if p > ¢.

(b)If p= pop1--- p, for n > 0, then p O q if and only if either g <« p, or g =
Do Pneitn---Ti—1 * g (possibly k& = n), where p, Jr, and p,or, < po - pu_1.

(c)If p= popi--- pa=1 © pu, then p 3 g if and only if p, J g and p,0g <
Po-- Pn—1-

Lemma 2. For p,q,s € (a o b)-DDF
(i) g < p implies p D g.

(i) p 3 q implies p = q.

(iii) p 3 q = s implies p J s.

Proof. (i) is by definition. (ii) and (iii) are proved by induction on p. For (ii), in the
second clause of part (b) of the definition of p J g, p, > r, holds by induction. And
in part (c) of the definition p, > ¢ holds by induction and p > p, holds by Lemma
2.3(iii). And for (iii), in the second part of clause (b), if s = pg- - Pp_1SuSpat - S %
s; with s, < r,, then by induction p, Js,, and p,os, < ppor, K< po--+ pp—1. U

Lemma 3. If p,q € (aob)-DDF, p 1 gq, then | pq|®®, | po q|*°® exist and pq 1 p.

Proof. (By induction first on p, then on q)

Case 1: p=(aob) or pis an x;. This is by definition, as in Lemma 1.

Case 2: p = uy-+-u,. Then if ¢ « p, we are done as in Lemma 1. So assume
g = U Uy_1Uy--Vk_1 * Uy, as in part (i1) of the definition of T1. Suppose k > n.
Since u, 1 v,, by the induction hypothesis on p, |u, o v,|°°? exists, and for each uv;,
v; < ¢ by Lemma 2.3(jii), so p Jv; by Lemma 2, so |pv;|?°® exists by the induction
hypothesis on g. Thus
‘aob —u

aob aob
| ]

\pq 0 Ut [tln © 0| Vs i1 | P2 |0 - | 1| * % | po
with, in the case * = o, pvy < p(uouy «+ Uy - - - Vg—2) = Uply - - - Ug— 1 (UnOVy YWr1{ PUps2)
-+ (prr—2) by the second part of Theorem 1.5. If x = -, |pg|®®® O p is clear. If
* = o, we have puy; 1] p by the induction hypothesis on p and prio p = pov €
Ug -+ Up—1(Up © Up)ps1(PUns2) -+ (PUk—1), by the last clause of Theorem 1.5. Finally
when * = o, [ pog|*® = |pgo p|*® = uu; - syt |, 00, |"" - - - | pr_1[*P o | poug |*°*,
and if x =, p<ug- - ty_1(up00,)---(ps_1), 50 | pogq|® = |pg|®°® o p. The case
k = n is similarly checked.
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Case 3: p = up- -~ wy_1oug. Then |ueq|®” and |ui 0g|*°® exist by induction, u; 0g <
uo -1, 80 | pg|® = uo- - ux_i|ueq|®. For |pql®® T p we have |uzgl*®® 3
ug by induction and wg oy = w0 q < ug---u_y, as desired, and |p o gl =
ug - ug_y o |uy o g%, with similar verifications. O

Lemma 4. Suppose u € DDF and a >~ u. Then |au|*®® exists and |au|®® 1 a.

Proof. (By induction on u). If v is a component of u, then ¥ > u’ by Lemma
2.3(iii), so a > u’ and the lemma is true for @ and u’. We check the main case u =
bty---£i_1of. Then |au|®® = (aob)tolat1|%? - - -|at,_1|%°Po|at,|*®, an (aob)-normal
term, each |a/;|**” existing by induction. To see |au|*®® J a, we have |a/,|*°® 0 a
by induction and af;, ca = aof, <X a(bly---£,-1) = (a o bYolaly) --(af,_;), as
desired. O

For the theorem, we show by induction on DDF-terms p that |p|®°? exists. If
L(p) # a, ie, p = Xuup - Up_y * up With x, # a, then by induction |p|®* =
X |40] %P -+ - [t 1|77 * (1| %°®. Simiilarly if p = aug -+ Up_1 * Uy DUt g is not of the
form bvg - - vy 1 * vy for some & > 0, we are done by induction. And |a(bvy - - - v )co
o1 %670 = (@0 b)|ug|av 77 - - - |avg | " feo ™ - - - [er—1]7°P ¥ [¢,]%°P. So we are
left with the cases where p has one of the forms a* (bou), a(bou)cg- - ch—y * i,
ax*(bug - -uy_youy), albug---ty_10uy)Co -+ cx—1 *ck. We look at the cases requiring
the lemmas and leave the others to the reader.

For p = a(bou)cy---cp—y * ¢k, we have |a(b o u)|*® = (a o b)u|*® o ab. We
claim ((a o b)u]*® o ab) 1 ¢;. Since ¢y < a it suffices by Lemma 2(ii) to show
((aob)|u** cab) 2 a. We have ab J a and aboa = acb < (ao b)ul**?, as desired.
Thus |a(b o u)|*°® O ¢y so by Lemma 3 |a(b o u)cy|*®” exists and is Da(bou) = ¢.
Iterating Lemma 2(ii) and Lemma 3 £ times in this manner yields that | p|*°® exists.

For p = a(bug---up—y o uy)co-- - ch—y * ¢, we have v = a(bug - u, .1 o u,) =
(a o b)uo(auy) - (aun_1) o (au,) and claim that |r|*°® 7 ¢o. By Lemma 3, lau,|*°* 3
a > cp, SO |au,,|“°b J ey and au, 0cp X au,0a = aou, < albuy--u,_y) =
(aob)ug(auy)- - - (aup,—3). This proves the claim and finishes the theorem by iterating
Lemmas 2(ii) and 3 as in the previous case. [

For i =1,2,..., o; the ith generator of B,., define
(i) =x_1x5, ()" =xi_y,
)™ =x¢ (k#i—1,0).

Then because the x;’s are free generators of 2, this map extends to a map u — u%
from 2, to 2.

Theorem 2.5. For p,gq € DDF, i=1,2,...
(i) p<g& p7 < g7
(il p < p”.
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Proof. Let a = x;_1, b =x;, so (ac b)” = aob. By Theorem 2.4, it suffices to prove
(1) and (i1) for all p,q € (a o b)-DDF.

For (i) we show by induction on p € (a o b)-DDF that for all ¢ € (a o b)-DDF,
p < q= p® < q% (the (<) direction then follows by linearity of <).

Let pbe popi - pn—1* py in (@ob)-DDF, where py is either aob, some generator
e different from a and b, b, or a, and p% = pg' pl'--- py_, * p7 is a pg'-decreasing
normal sequence by the induction hypothesis.

Now suppose p < qo---qk—1 * gk, the a o b-DDF term for g; to show p” < ¢”.
If po = qo, let j < n be least such that p; < the jth member ¢g; of ¢’s associated
sequence. Then pJ' = g7, / < j, and p}' < g7 by induction, so by Lemma 2.1(i)
pﬂ'[ ‘< qﬂ,'

So assume pg # go. We check the cases pg = b and g¢ is a or ao b, py = a and
qo = a o b; the other cases are either impossible or are cases where p® is dominated
by ¢% in a variable clash. In the pg = b case (with n > 1), p; < py so L(p) is a
generator ¢ < b, and we are done by a variable clash here as well.

We claim that if pg = a, then p < p% < ac b, which will prove the last case
po=a, go =aob. Note that p; < b lestaob < p. Thus p” =abp{ --- p'_ | * pJ
is, by that fact and the induction hypothesis, an a-decreasing normal term (i.e., of
length n + 2). Since py = a the condition n = 1, p; = b and * = o is disallowed,
whence Lemma 2.1(i) gives p° < aob. To show p < p%, we have L(p;) <X b. If
L(p1) < b, then we are done by a variable clash. If L(p,) = b, then p| = b (otherwise
pr=bsg- s,y *s, and aob < p). Then

p:abp2p3 * Pn—1 % Pns

([« Gi 0i i a;
p” =abapy py - p,_ * by,

Let v9p = a, v = b, vj42 = vov---vj, so for j > 1, v; = [,_i(a,b). Then by
induction on j, (vo---v;)” = vg---v;11. If for every j < n, p; = v;, then * # o (lest
p=aob),s0 p=1vg--Uy <y Uplny1 = p°. Finally, if for some least j, p; < v;
(note j > 2), then p® > (po-+- pj—1)” = (vo -+~ vj~1)" =g~ v;_1v;, which is = p
by Lemma 2.1(i). This proves (i).

For (ii), we prove p < p” by induction on p € (a o b)-DDF. Writing p as in part
(1), if pp =aob or py is a generator different from a and 5, p < p” by the induction
hypothesis and Lemma 2.1(i). If py = b, then p’ dominates p in a variable clash,
and for the case py = a, p < p° was proved in part (i). O

Theorem 2.6. If p € DDF, then for all i > 1, (p)° € DDF.

Proof. First note that the definitions and lemmas about (a o b)-DDF in Theorem 2.4
apply to the simpler situation of DDF as well. Namely, for p € DDF write |p| for
the DDF representation of p, and let, for p,g € DDF, q < p if either p is an x;
and g < p or lp| = pop1---p, forsome n > 0and g X pg--- p,—; and let p J g
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(p,q € DDF) hold if one of the following holds:

(1) p>q.

(ii) [pl = popr- - P, lgl = Pop1 -+ Pue1Gn - Qa1 * qx, With p, g, and (p, 0gy)
< po Pr-t
(i) |p[ = popi Pn=1° Pus Pn TG, Pnoq < PoP1-* P
Then, as before, if p,g,s € DDF, p Zlq > s, then p Js, and p T ¢ implies that pgq,
poq € DDF and pg 3 p.

Lemma. If p € DDF, p < xixis1, then p T xpxp .

Proof. If p = x;, then p <« xpx441. The other case is p = xprg---ry—) * 1y, with
ro < Xgy1; then rg Cxpyy and (o org) K xp. U

Fix i in the theorem, and let @ = x;_y, b = x;.

We prove by induction on p € DDF that (p)” € DDF. If p is an x; we are done,
so let |pl = popi -+ Pu1 * pu, for n > 0. If py is any variable other than a, then by
the induction hypothesis and Theorem 2.5(i), | p”| = |py'| -+ - | Ph_ | * | 2.

So suppose py = a, then

(p)7 =ab(p)” - (pa=1)” % (pu)” (*)

where by Theorem 2.5(i) the sequence (ab)(p) )% -+ (Pu—1)7*(pn)” 1s (ab)-decreasing
normal. We have L(p|) =< b; if L(p1) < b, then by Lemma 2.3(ii), (p1)* < a so the
sequence (*) 1s a-decreasing normal, as desired.
So assume p = bty -+l * by, then |pl'| = aft]'|---|t7_ || = |tg]. Since t; < b,
Lemma 2.3(ii) gives ]’ < b, whence p|' < ab. By the lemma, then, ab J (p;)”.
Thus the statement which immediately preceeds the lemma may be iterated » times
on the expression (), to obtain that p® € DDF. [

Theorem 2.7. The maps u — u”, restricted to DDF, induce a partial group action
of B, on DDF.

Proof. We have that x"*'” and x*'”"*' equal

X(rixee2)  (k=i—1)
Xg 1% (k=1)

Xi—2 (k=i+1)
Xk (otherwise)

a,0;

"and x,'" are

and for j > i+ 1, x,f‘a
X (k=i-1i)
6 (k=j-1))
Xg (otherwise)

By Theorem 2.5(i) the maps u — u"fl, restricted to DDF, are one-to-one. Let

w be a braid word af[f‘afl . --off‘. Define the domain of w to be the set of d €
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DDF such that for each j < m, (((d)% ) - exists and lics in DDF. And for
d € domain w write d% = (((d)”'ol)---)"ii. We need to check that if w and w’ are
equivalent braid words, d € domainw N domainw’, then d* = d"'. It suffices to show
there is a derivation of the equivalence of w and w', with d € domw” for every
intermediate word w” in the derivation. This follows from Garside [14]. Namely, let
w5 v mean that v can be obtained from w via applications of the rewriting rules
ai_la,-iv(Z), oo S0, 0i0; <—*—>aja,~ (i > j+1), and 0,6,410; < 0,:10,0,4,. Note that,
by Theorems 2.5(i) and 2.6, if w = v, then domain w C domain v. So it suffices to show
that if w and w’ are equivalent, then there is a v with w > v, w' 5 v. Garside defines
A, = a(6201 ¥(036201) -+ - (64— -+ 036207 ), and shows for i < » that ¢;4, i»A,,on_,-,
a,-"A,, X A,,a"‘_li, and 0; 5 A,c for some negative braid word ¢ (i.e., a word in {a,;‘ :
1 < m < n}). He then derives that for w equivalent to w’ there is a v (of the form
dc, d a positive word, ¢ a negative word) with w t, w = v, as desired. O

We recall the definitions [6] of the linear ordering < on B.. Let ¥ be a left
distributive (or 2') algebra. Let ¥ be the set of sequences & = {cg,c1,...,Cp,...) from
%. Then the action of a braid generator on €,

<C0,...,C;_l,Ci,...,C,,,...>a’ = <Co,...,C,'_1C[,C[_1,...,C,,,...>

extends, when ¥ satisfies left cancellation, to a partial action of B, on ¥“ (again,
Garside’s result is used in seeing that ¢*, when defined, is unique). We use the same
notation ¢*, p* for this action and the one defined in the last section; since they are
on different sets, no confusion should arise.

Define for ¢,d € 67, ¢ < Lex d if there is an i with ¢; # d;, and for the least such

I, ¢; <L d,‘.

Theorem 3.1 (Dehornoy [6]). Let € be an </ or 2,.

(1) For any ag,...,%, € Bs, there is a ¢ € €“ such that for all i < n, (¢)* exists.
(ii) Define « < B < for somelany ¢ such that & and & exist, & <[ TP; then <
is a linear ordering on B, (which is independent of %).

(iii) < is the unique linear ordering on By such that for all x,B,7 € By, f <
y & aff < ay, and such that o;0 > [ if o and 8 are in the algebra generated by
{O’j j > l}

(iv) B <y & By > & where « > ¢ & a can be expressed by a braid word in
which the generator with least subscript occurs only positively.

Part (iv) is implicit in the construction in [6, Lemma 7.1].
We will work with the case € = 2. Let ¥ = {xg,x,...,%,,...) be the sequence
of generators of Z,,. For a € By, P € (2,)® such that ( p)* exists, let (( p)*)r be
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the kth coordinate of ( p)*. Let Rev : B — B, be the reversing antiautomorphism:
Rev (a,.i‘ = J,-il, Rev (f7) = (Rev y)}Rev f).

The following was also noted, for the case of the action of B, on the free group
under conjugation, in Larue [19].

Lemma 3.2. If o € BL,, then for all k, (X)* ) = (xz )RV~

Proof. The lemma holds if o is a ¢;. Suppose o« = fig; where f§ € B}, and the lemma
holds for f. Then (¥)* = (¥)f)" = ()c(?ev ﬂ,xfev/’),...)"' = (xgev ﬂ,...,x;{f;ﬂ, ?_e‘fﬁx,gevﬂ

Revf _Revj . . Rev g aRev f§ Rev : Revf Revf
i1 X e I m # 0 — Li, then x, " = xp = xReva and xRVARVF

R . Rev Rev f
(e RV E = x PRV — yReva Finally, xfVF = xTRVE — yReva

The proof works for any o € B, such that (¥)* exists, but this improvement is
vacuous by the following result due to Larue.

Theorem 3.3 (Larue [20]). For 2 < N < oo, a € By, (x; : i < N) the sequence of
generators of Py, (x; i < N)* exists if and only if a € B},

The faithfulness of the action of B, on (%)“ follows from Theorem 3.1(i) and (ii).
We derive the faithfulness of the action of B, on DDF.

Theorem 3.4. If o, € B, a # f, then for some d € DDF, d* # d*.

Proof. We have Reva # Rev . Let m be such that «, f € By. Let 4 = 4,,(= Rev 4,
[14]). Then pick #n sufficiently large so that Rev a- 4", Rev fi- 4" € B}}. Namely [14],
for each i < m, A can be written as g, - y for some y € B;,. That, together with
g:,4 = Ao, (1 < ¢ < m— 1), gives the existence of such an n. Then by Theorem
3.1(ii), ()R> 4" £ (@)RvE4" 30 by Lemma 3.2 there is an i with x2* # x* #_ Take
d = x" (a member of DDF by Theorem 2.6). [

Theorem 3.5. If o € B, B € B, f # ¢, then fo > a.

Proof. 1t suffices to show that for all i, o;a > 2. First we show it when o € BZ_.
By Theorem 3.1(ii) there is a least & with ¥ = ((X)*); # ((X)"*)x = v, and either
u <y vorv <y u;, we want to show the former, it will suffice to show u < v. We
have u = (x; )%, v = (x;)R*% by Lemma 3.2. By applications of Theorem 2.6,
x,f‘e” € DDF. So u = v by Theorem 2.5(ii), giving the theorem when a € BZ.

For a € B, pick, as in Theorem 3.4, m and n, with m > i, such that for 4 = 4,, we
have A"« € BZ_. Tt suffices by Theorem 3.1(iii) to show that A”g;a > A"x. Assuming
without loss of generality that # is even, then 4"0,o = 0;4"%, and we are done by the
first part of the theorem. [J

For B,a € BY_ say that § is a proper subsequence of o if o = &od;---J, for
some sequence of generators J; and for some 0 < iy < --- < iy < n with £ < n,
B =00 - 9.
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Corollary 3.6. If B,o € BL,, B a proper subsequence of v, then f < a.

Proof. (By Theorems 3.5 and 3.1(iii), by induction on the unique n such that % is
the product of n many generators.). Since ¢ < o;, the atomic case holds. If f is an
initial segment of «, we are done. So suppose for some least » that i, > r. Then
8i, -+ 0; < 8p410,42 -0, (by induction) < 6,0,, -3, (Theorem 3.5). Multiplying
on the left by dg---d,_; gives f < a. O

By Theorem 3.5 the linear ordering < extends the partial ordering on B, used by
Elrifai and Morton in [12] (they defined f < o « for some 7,0 € B  with at least
one of 7,4 different from &, a = yf4).

Corollary 3.7. For N finite, B, is well ordered under <.

Proof. Else there would be a sequence % > oy > -+ > o, > - with o; =
0;00j,1--0;n, each &;, € {01,...,0v_1}. Applying (a special case of) Higman’s
theorem [15], there exist j < k with ;¢---6;, a subsequence of &s¢-- - dyn,, cOn-
tradicting Corollary 3.6. [

Burckel [3] has recently given a tree representation for the members of By, showing
. . V=2
that the ordinal of BY is w®

Theorems 3.1(ii), 3.3, and Corollary 3.7 imply the following result.

Corollary 3.8. For 2 < N < 00, {(x; : i < N) the sequence of generators of Py,
{(x;:i < NY*:a € By and (x; :i < N)exists} is well ordered under <.y.

References

[1]1 E. Artin, Theorie der Zopfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), 47-72.
[2] E. Brieskorn, Automorphic sets and braids and singularities, in: Braids, ed., Contemporary Math, Vol.
78, (American Math. Soc., 1988) 45-117.
[3] S. Burckel, Thesis, Université de Caen, 1994.
[4] P. Dehomoy, Free distributive groupoids, J. Pure Appl. Algebra 61 (1989) 123-146.
[5] P. Dehornoy, Sur la structure des gerbes libres, Comptes-rendu de I’Acad. des Sciences de Paris 309-1
(1989) 143-148.
[6] P. Dehornoy, Braid groups and left distributive structures, Trans. Amer. Math. Soc. 345 (1994) 115—
150.
[7] P. Dehomoy, A canonical ordering for free left distributive magmas, Proc. Amer. Math. Soc. 122
(1994) 31-36.
[8] R. Dougherty, Critical points in an algebra of elementary embeddings, Ann. Pure Appl. Logic 65
(1993) 211-241.
[9] R. Dougherty and T. Jech, Finite left distributive algebras and embedding algebras, Adv. Math.
[10] A. Drapal, Homomorphisms of primitive left distributive groupoids, Comm. Algebra 22-7 (1994)
2579-2592.
[11] A. Drapal, Persistence of cyclic left distributive algebras, J. Pure. Appl. Algebra 105 (1995) 137-165.
{12] E.A. Elrifai and H.R. Morton, Algorithms for positive braids, Quart. J. Math. Oxford 45 (2) (1994)
479-497.



98 R Laver!Journal of Pure and Applied Algebra 108 (1996) 81-98

[13] R. Fenn and C. Rourke, Racks and links in codimension 2, J. Knot Theory and its ramifications
(1992) 343-406.

[14] F.A. Garside, The braid group and other groups, Quart. J. Math. Oxford 20 (2) (1969) 235-254.

[15] G. Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. 2 (1952) 326-336.

[16] D. Joyce, A classifying invariant of knots: the knot quandle, J. Pure Appl. Algebra 23 (1982) 37-65.

[17] A. Kanamori, The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings (Springer,
Berlin 1994).

[18] L. Kauffman, Knots and Physics (World Scientific, Singapore, 1991) Chapter 1-13.

[19] D. Larue, Braid words and irreflexivity, Algebra Universalis 31 (1994) 104-112.

[20] D. Larue, Thesis, University of Colorado, 1994,

[21] R. Laver, The left distributive law and the freeness of an algebra of elementary embeddings, Adv.
Math. 91 (1992) 209-231.

[22] R. Laver, A division algorithm for the free left distributive algebra, Proc. Helsinki 1990 ASL meeting
(Springer, Berlin, 1993) 155-162.

[23] R. Laver, On the algebra of clementary embeddings of a rank into itself, Adv. Math. 110 (1995)
334-346

[24] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory (Springer, New York, 1977) 157.

[25] D.A. Martin, Infinite games, Proc. International Congress of Mathematicians, Helsinki, 1978,
73-11e6.

[26] D.A. Martin, Woodin’s proof of PD, handwritten notes, 1985.

[27] S. Matveev, Distributive groupoids in knot theory, Math. USSR-Sb. (1982) 73-83.

[28] J. Steel, On the well-foundedness of the Mitchell order, J. Symbolic Logic. 58 (1993) 931-940.

[29] M. Takesaki, Abstractions of symmetric functions, Tohuku Math. J. 49 (1943) 143-207 (Japanese);
Math. Reviews 9, p. 8.

[30] F. Wehrung, Gerbes primitives, CRAS Paris 313 (1991) 357-362.



