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0. 

For 2 < N < c)3 let BN be the braid group on N strands; BN, with generators 

o~,cQ,...,o,,... (1 2 i < N), is given by the relations OlCi+lUi = o;+~c-J~o~+~ and 

aigj = OjOi (j > i + 1). TWO basic group actions of BN are as follows. BN acts on 

the free group (F, 0) on generators {hi : 0 5 i < N} by (A,_, p = h,_l 0 hi o A;_‘, , 

(I?;)‘~ = hi-l, (hj)“i = hj for j # i - l,i, and (U o v)‘( = (UP o (c)‘e [l]. If (G,o) is 

any group, BN acts on GN by ((~0 ,...,gi-I,%, . ..1 Yk,...)k<N)“’ = (go ,... .(Sl-, 0 qr 0 

g;,),Yi-,,...,gk ,... )k<N (see [24, p. 1571). 

More generally, the braid groups act, or partially act, in various ways on certain 

left distributive algebras and their direct powers. A left distributive algebra is a set 

with a binary operation on it satisfying the left distributive law a(bc) = (&)(a~) (for 

example, for a group (G, o), the conjugation operation gh = goh og-’ satisfies the left 

distribution law). Brieskorn [2] expressed a number of actions of BN as generalizations 

of the second of the above examples: if ‘8 is an automorphic set (a left distributive 

algebra in which left multiplication by any element is bijective), then the condition 

(co,..., Ci__l,Ci,...,Ck,...j"' = (CO,...,(Ci_ICi),Ci-,,. . .,Ck,. . .) induces a group action 

of BN on WN. See [2, 3, 16, 18, 27, 291 for some examples of this related to knots 

and braids. 

For K a cardinal, let dK be the free left distributive algebra on K many generators. 

Then dK is not an automorphic set, but it does satisfy left cancellation, as follows. 

For V any left distributive algebra, b, c E %?, define 

b cL c ti for some bo,bl ,..., b,,EW, c=(((bbo)b,)...b,_,)b, 

Let d = dl. Then <L linearly orders d [4-6, 211. It follows that d satisfies left 

cancellation. These and similar facts about the dK’s (K > 1) are recalled in Section 1. 
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For 4k a left distributive algebra satisfying left cancellation, as noted by Dehomoy 

in [6], the action of BN on ‘8ZN is still a partial group action. That is, for Z in VYN, 

the equation ;“I = Z has at most one solution, so ?‘I _’ is unique when defined. Also 

needed to check that this action is well defined is a result of Garside [14] (see proof of 

Theorem 2.7 below). Write (0 = (0, 1,2,. . }. Dehornoy ([6, Theorem 7.6, Theorem 3.1 

below]) proved, by means of the partial action of B, on ,@‘I, that the linear ordering 

<L on & induces a linear ordering < on B,. For a combinatorial characterization of 

< , define, for x E B,, c the identity of B,, t: < ‘a if and only if V. can be represented 

as a nonempty braid word w = &’ . &’ such that the generator with least subscript 

appearing in w occurs only posi&ely. ?hen for x, p E B,, r < B holds if and only 

if c < a-‘fl. So i < i implies gi > gj and, for example, (~,‘a~+, < c < c,~o;. 

Let Bi be the set of positive braids in B,v-braids which can be represented by a 

word (possibly empty) in which the generators occur only positively. Thus Dehornoy’s 

ordering extends the notion of positive braid: for 2 < N 5 co, Bz is a proper subset 

of (2 E Bx : F < ct}. The ordering is preserved under left translations; this yields, as 

remarked by Larue, a combinatorial proof that the braid groups are torsion free. 

In this paper a result about a free left distributive version of Artin’s group action 

is proved; this is then used to derive a result about <. Let x0,x1,. ,xn,. . be the 
g, generators of J&‘,,). Define x,” = X,-I, xi_, = xI_Ixi, and xJ”’ = xj for j # i - 1, i. This 

does not induce a partial action of B, on &(,, ((xaxa)“’ = (xtx~)~I for example). We 

define a subset of dC1, ~ those members of &(,, which can be expressed in “decreasing 

division form”. Decreasing division form (DDfl is defined with the aid of a natural 

linear ordering + on Y&‘(,~. 

Theorem. The action of the generators given above induces a partial group uction 

of B, on DDF. This action is ordes preserving, faithjid, and for all w E DDF und 

x E B&, w 3 w”. 

To define DDF, as in the case of the normal forms of [21, 221, we will not work 

in d,, but in .YC,l, the result of enlarging S,,) to include a composition operation, and 

work with the DDF of that larger algebra. 

Elrifai and Morton [ 121 define a partial ordering on B,: x is less than B in their 

sense if and only if there are y and 6 in B&, at least one of y, 6 different from E, with 

B = ga6. 

Theorem. The ordering < extends the ordering oj’ Elr$ai and Morton. For N jinitr, 

B; is well ordered under <. 

The parts of Section 1 needed for Sections 2 and 3 are Theorem 1.5 and basic 

properties of left distributive algebras (Proposition 1 .l). Theorem 1.5 states the linear 

ordering on free left distributive algebras [4-7, 21, 221 in a general form. It is the 

version in [7] generalized to the ;YK’s; it follows from Theorems 1.3 and 1.4. Theorem 

1.3 was derived from large cardinals in [21], and without them in [6]; a short proof is 

given in [19]. A short account of parts of Theorem 1.4 may be found in, e.g., [9]. 
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1. 

We recall some facts from [4-7, 21, 221, and related results. 

In a language with two binary operation symbols . and 0, let, writing ut’ for u.c, C be 

the set of laws {(aob)oc = ao(boc), (aob)c = a(k), a(boc) = aboac, aoh = aboa}. 

Then C implies the left distributive law (u(k) = (a o b)c = (ub o u)c = ub(uc)). 

Two models of C are (G, o, .) where G is a group, o is the group operation and 

is conjugacy, and, from set theory, (8;., 0, .), where for i, a limit ordinal 6;. is the 

set of nontrivial elementary embedding j : (Vj,, E) + (V;, c), o is composition, and 

,j . k = lJ,,;.j(k n V,). Let .Ph., for K a cardinal, be the free algebra satisfying Z on 

generators {xX : a < FL}, and let 9 = 81. 

Let A, (respectively, P,) be the set of terms in the variables x0,x1,. .,x2, . (2 < K) 

using the operation (respectively, . and 0). An example of such a term is (xzxt ) o 

(x*(x3 o x0)). Then d, = A,/ E,&~ and PK = P,/ -_y,~, where for U, 2: E A,, u E,~A,. r 

iff L’ is the result of repeated substitutions in u using the left distributive law, and E CP,, 

is similarly defined by substitutions using C. 

Let % be an algebra satisfying C (or a left distributive algebra, in which case delete 

the parts of the following definitions involving 0). 

Forcg,cr,... , c, E ‘27, write coct . . . c,, for (((cccl )cz). .)c, and write cocr c,,_~oc,, 

for ((((cocr)cz)..~)c,_r)oc,. Let u = cocr . ..c._I*c, mean that u = cocr .‘.c,, or u = 

c()ct ‘.f q-1 oc,. Then for any ZA E PPh., u can be written in the form popI P,,_~ * P,~ 

where po is a generator. 

For U, v E %?, say that u is a left component of c (U <t_ c) if there are ~0,. , u, E % 

with c’ = UUOU~ . . q-1 * u,. Then -CL is a transitive relation on $5. 

We summarize some facts (% is still an arbitrary left distributive algebra or an 

algebra satisfying C). 

Proposition 1.1. (i) For p E 3, there is a unique r such that for some po, . . . , p,- , E 

Pp,, p =X,po"'pi_2 * pi_1; write X, = L(p). 

(ii) For a E d, there is a unique a and n such that jar some ~0,. . , a,-, E .d,. 

a = uo(al(. . (a,-~~~))); write xnr = R(u), n = depth a. 

(iii) For w E 9% there is a unique n such that for some ao,. . . ,a,, E A,, w E cp 

a0 0 . 0 a,. 

(iv) If u,b,c E W, b <L c, then ub <L a o b -CL UC. 

(v) For w E P,, let u cut of w be a c E P, gotten by truncating w at an occurrence 

of a variable in w. Thus the cut of x0x1(x2x1 o (x,x3 o x2)) at the last occurrence of 

x1 is XOX~(X~XI o x1 ). Then tf c and d are cuts qf w with c strictly to the left qf’ d. 

then c <L d. 

Theorem 1.2 (Laver [21]). For a, b,ua,. . . ,a,,,, bo,. . . , b,, E A, 

(i) ~00.. .ou, s.9,~ boo...ob, ij’and only if’u~(u~(~~~(u,,,x,))) F-C/,, bo(bl(...(b,,,x,))) 

for somelull generators xX. 

(ii) a -_.f,~ b if and only tf a ~.d~ b. 

(iii) a < L b us members of pph- tf and only tf a < L b as members of A,. 
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The proof in [21, Section 11, for K = 1 works without change for arbitrary K. By 

(ii), identify d, as a subalgebra of P, (restricted to .). Write = for f.@,, , ~,~l,, . 

Say that ??, a left distributive algebra or an algebra satisfying C, is irreflexive if 

for all c E %?, cQt_ c. Common examples of left distributive algebras (such as groups 

under conjugation, vector spaces where v w = tv + (1 - t)w (t a fixed scalar)) are 

idempotent and thus not irreflexive. 

Theorem 1.3 (Laver [21], Dehornoy [6] in ZFC). For every curdinal K, s&‘~ and Yti 

ure irrejexive. 

To prove this, note that if there exists an irreflexive left distributive algebra, then 

the dK’s are irreflexive, and the Yp,‘s are easily seen to be irreflexive also (if p E 

PK, p = ppo. .. pa_1 * p,,, and x, = L(po), then px, E d, and px, CL px, 

would hold). In [21] it was shown that the algebras 8~~ mentioned above are ir- 

reflexive, and, for j E G;,, that the subalgebra of &;, generated by j under . (re- 

spectively, under . and o) is isomorphic to d (respectively, 9). That there exists 

a /z with 8;. # 0 is a large cardinal axiom; nonempty b;.‘s cannot be proved to 

exist in ZFC (some facts about the &i.‘s appear in [8-l 1, 17, 21, 23, 25, 26, 28, 

301). Then Dehornoy [6] proved without using large cardinals that a certain left dis- 

tributive algebra on the braid group is h-reflexive, giving a proof of Theorem 1.3 

in ZFC. Larue [ 191 has given a shorter proof of the irreflexivity of the algebra in 

[61. 
For K = 1, a stronger statement holds: < t_ linearly orders d and 9. This was 

first proved in [21] (with the irreflexivity part coming via the large cardinal axiom). 

Dehornoy [4, 51 around the same time proved, independently and by a different method 

that for every a, b E &, a <L b or b 5~ a (from Theorem 1.4(iii) below). Thus he 

was only missing irreflexivity for the proof of the linear ordering. We summarize 

Dehornoy’s method, and some applications of it using irreflexivity, in Theorem 1.4. 

We summarize the method of [21, 221 in Theorems 1.6 and 1.7. Either of these two 

methods, combined with the ZFC proof of Theorem 1.3 in [6], give a proof in ZFC 

that <r linearly orders J&’ and 9. This linear ordering is stated here in a general form 

in Theorem 1.5. 

For u, v E A, write u + v to mean that v can be obtained from u by a sequence of 

substitutions, each of which replaces a subterm of the form a(bc) by (ab)(uc). Then 

u + v implies u = v. Note that if UOUI . . u, -P v, then v is of the form vavr . . v,, 

where for all i 5 m there is a j < n with uaui . . u, G vovl . . . Vj. 

Theorem 1.4 (Dehomoy [4-71). (i) dK is confluent, that is, ij’ a, b E A, und a E b, 

then for some c E A,, a + c and b + c. 

(ii) (From (i), Theorem 1.3, und the remurk preceding this theorem) For w E 

,c4,, {u E af4, : u <L w} is linearly ordered under <L. 

(iii) Zf a, b E A, then either a, b + c for some c, or for some c = cocl cn E A with 

n > 0, either a + CO and b + c or b + CO and a + c. 
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The following remark about ph. will be used below: if t <L wx in YK and x is a 

generator then t sL w. Namely, for some generator y, ty IL wx, and ty, wx E sd,. 

One has then that ty is a cut of some word for wx. The latter word, by induction on 

derivations, must be of the form WO(WI (. . (w,x))) where wg o WI o . . w, z w, from 

which it follows that t 5~ w. 

For p, q E YK say that p and q have a variable clash if there are a~, . . a,_ 1 E A, 

(n = 0 allowed) and x, # xp with ao(al(. (an-lx,))) IL p and ao(ai(. (u,_Ix~))) 

sL q. Note that UO(UI(. . (a,_~.~,))) 5~ uo(ul(. . (u,_lxp))) cannot hold. Namely, 

they cannot be equivalent by Proposition 1.1 (ii), and if ao(ul(. . . (u,_lx,))) <L 

uo(ul(. (u,_~xp))), then by the above remark us(ui(. . (u,_lx,))) IL a0 o al o . . o 

q-1, which contradicts irreflexivity. It follows that if p and q have a variable clash 

then p IL q cannot hold: by Theorem 1.4 (ii) one would have ao(u~(~~~(u,_rx,))) 

<L-comparable with uo(ul(. . (u,_lxp))). 

If 4 is a linear ordering of the generators, say that q dominates p (with respect 

to 4) in a variable clash if there are ai’s, x,,x/j as above with x, 4 X/C (we say that 

the pair (QO(QI(. ~.(G-Ix,>>>, ~o(QI(~..(G-Ix~)))) witnesses p + q). Observe that if 

q dominates p in a variable clash, and p <L p’,q 51 q’, then q’ dominates p’ in a 

variable clash. Extend + to a relation + on gpK by 

p 4 q ++ p <L q or q dominates p in a variable clash. 

Dehornoy [7] derived from Theorems 1.3 and 1.4 that < linearly orders d,. We 

indicate the proof. To see, for example, that if U, L: E J&‘~, then either u = r, u <,_ V, 

2: <t_ u or u and v have a variable clash, let u and c’ be given by representatives 

(also called u and v) in A,. Let u’ and d be the members of A obtained from u and 

v by replacing all occurrences of variables by x0. By the linearity of CL on .d we 

have, say, ~2 5~ fi. By Theorem 1.4 there are YO,Y~, . . . ,Y, E A with c” -+ ~0~1 . . r, and 

z2 + YOYl . . Ti, where i = 0 or n. Applying the same substitutions to u and c yields 

ti + S()Sl . . s,, u + tOtI . ti. If for all e < i, SF = t/, then u $ v and we are done. 

Otherwise for some least e, s/ # tf (but $J = if = r/). This implies, by Proposition 

1.1(v) that there is a variable clash between p and q. A checking of cases then gives 

transitivity of -X on 22,, and the h-reflexivity of -C on d, is derived from confluence 

as above using the irreflexivity of <L on d. 

We will check that 4 also linearly orders 8,. This may be proved by deriving (in 

the manner of Theorem 1.4(i)) a confluence result for 8, (if p,q E P,, p E q, then for 

some Y E P,, p, q + r, where in the definition of +, the rules (a o b) o c H a o (b o c), 

(a o b)c ti u(bc), u(b o c) --f (ub o UC), a o b --f ub o a are allowed) and applying it 

together with Theorem 1.3. A shorter proof is to derive the result from the linearity 

of + on ,d,. 

Theorem 1.5. Given u linear ordering + on {xX : a < K}, extend it to a relution + 

on 9, us above. Then 4 linearly orders YK, extends -C L, and if p, q, r E 9x with 

q -X r, then pq + p o q -X pr (whence pq = pr H q = r, pq + pr * q -C r). 
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Proof. Let _G!; be the free left distributive algebra with generators {xX : r < K} U {x}, 

where x is a new variable, and let + on J$ be defined as above from the given 

ordering on {xX : x < K} together with x < x, (all CI). 

Lemma 1. u 4 w in 9, H wx dominates vx in a variuble clush in d:. 

Proof. Let v = aa o o a, with each a; E d,. 

(+) If c <t_ W, then w = vu0 . c,,_I * u, for some ~‘0,. . . , z’,, E YK, and, letting 

xz = L(Q), cx = ao(ai(. . a,~)) and aa(ai(. (a,,~,))) <L wx, and if w dominates zj 

in a variable clash, then wx so dominates vx. 

(G) Suppose for variables z + r from {xX : a < PC} U {.I+} that 

s = bo(b,(. (b,z))) IL vx, t = bo(b,(. . . (b,r))) IL wx. 

Then ho o bl o . o b, 5~ a; moreover, since x 4 r, t # wx so t 5~ w. Thus 

if s sL 11, s and t witness that v < W. The other case is where s = LX, whence 

v = b. o . . o 6, <L bo(bl(...(b,g-))) = t IL w, giving v 4 w. 0 

Lemma 2. IJ’u,c,w in pph., u + c + w, then u -x w. 

Proof. By Lemma 1 we have (ao(ui(. (u,j))),u~(u~(~ . (a,&)))) witnessing ux + z;x, 

and (ba(bi(. . . (bd’)>), bdh (. (bd)))) wi nessing t cx + wx. Since x does not occur 

in u or v, the ai’s, hi’s belong to JZ!,. To show wx dominates ux in a variable clash, 

write a’ = aa o . . o a,,, b’ = bo o . . . o 6,. Since both Lik, g/ <L ZIX, by Theorem 1.4(ii) 

a’k and &! are <L-comparable. 

Case 1: a’k = gt. Then a’ = 6’ and (Zj,?it) witnesses ux -X wx. 

Case 2: a’k < ,_ &!. Then iik 5~ b’. Thus Zk <L & <L wx, so (Zj,a’k) witnesses 

ux + wx. 

Case 3: g/ cL a’k. Then similarly 6t <L a’ -CL iij <L UX, and (&‘, h) witnesses 

ux+wx. q 

Lemma 3. For c, w E 8, exuctly one of v + w, v = w, w 4 v holds. 

Proof. By the linearity of -: on &‘L either rx = wx or, say, ux + wx. If vx = wx, then 

u = W. If vx < wx, then either ux -CL wx or W,X dominates OX in a variable clash. Since 

ux -CL wx cannot hold- it implies cx (L w but x does not occur in w-assume (Zk, iid) 

witnesses OX -X wx. Since / # x, Z/ <L w, so if iik IL v, then (Zk,Zi;e) witnesses 

z’ + w. The other case is ?ik = vx, whence v = a’ <L a’T 5~ w, so v <L w. 

Finally, -X is irreflexive on 9, : for p E Pp,, p 74 p since px # px in S:. Thus at 

most one of u < w, 2; = w, w < c holds. 

This proves the linearity of 3, and the other statements in the theorem are immediate 

from that and the definition of the ordering. 0 

The division form of [21, 221 is a way to determine, for U, v E 9, which of u <L 

C, u = v, v <L u holds, by a type of lexicographic comparison. The remarks about 

it (from here through the end of this section) are included for completeness and for 

comparison with the next section, which is a self-contained version of division forms 

for the case of PC,,. 
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Define, for p E 9, a p-normal term to be a product expressed in the form popI . 

P+I * ptl, where PO = p, pi+2 <L POPI . pi for all i, and if * = o and n > 2 then 

pw <L POPI ‘.’ Pn-2. 

Theorem 1.6 (Laver [21, 221). (i) For cdl p,u E 8, $ p sL u then u is representable 

uniquely as u p-normal term po . . . pn_ I * pn. 

(ii) Moreover, let (T,C) be the rooted, .Y-labeled tree such thut / (root of T) = u. 

such thut c”(t) <L p implies t is a maxinzal node of’ T, and such that p <L /(t) 

implies, letting po pn_l * p,, be the p-normal term equulliny t(t), t’s immediute 

successors are to,. . , t, with [(ti) = p,. Then T is jinite. 

The uniqueness part relies on ii-reflexivity. The term for u given by part (ii) (in a 

language with a symbol for each q IL p) is called the p-division form of U. 

For p, q E 9 define the (nonnegative) iterates I,(p, q) of (p, q) by Zc( p, q) = 

q, Il(p,q) = P, &+2(p,q) = b+l(p,q)Mp,q). Writing Mp,q) = I,, then Z+I oz,, = 

p o q by iterating the law a o b = ab o a. 

If p,u E 9, define the p-associated sequence SP(u) = S(U) of u as follows. If 

u IL p, S(u) = (u). If the p-normal product equalling u is uoui, . . .u, (so us = p), 

then S(U) = (u~,ui,... , u,). If the p-normal product for u is ~0~1 . u,_ 1 o un, then 

S(U) is the infinite sequence (uo,ui,. . ,u;, . .), where for i > n, u, = uoul .ui-z. 

That is, for i 2 n, u; = Zi_n(uouI ... u,_~,u,~). 

Theorem 1.7 (Laver [21, 221). For p,u, u E 3, u CL L’ if and only ij St,(u) is lexi- 

coyruphicaZZy less thun s,(v). 

ptThat is, SJu) is a proper initial segment of S,(v), or S,(U) and Sp(r) differ at 

some first coordinate i and ui -CL v,. To derive that <L linearly orders 9, let p be 

the generator x0 of 9. For u, c’ E 9, whether or not u <L c is decided by comparing 

S(U) and S(v), and then if S(U) and S(c) first differ at coordinates u;, vI, comparing 

S(u;) and S(Q), etc. One can check that this procedure ends in a finite number of 

steps. 

If 2.4 = popI.’ . pn_l * p,, is a po-normal term, then it is seen that for each i < n, 

pi+1 is the -CL greatest member q of 9’ with PO .. piq IL u (see e.g. Lemma 2.1(i) 

below). Theorem 1.6(i) thus implies that a type of division algorithm for 9 terminates 

in a finite number of steps. Namely, if u <L v let us be greatest with uuo <L r, and if 

UUO, uouo # c let ui be greatest with uuoui <L c, etc. Then for some n, v = uucui . u,, 

or c = uuoul . u,_l 0 u,. 

2. 

From here on, -X is the linear ordering on YC3 induced by the ordering x0 % xi t 

x2 + . + x,? + . ., as in Theorem 1.5. 
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For P E ppw, a p-normal term in PC0 is a term of the form popI . pn- I * p,,, where 

po = p, pi+2 5 pop1 . p, for all i 5 n - 2, and 

if * = o and n 2 2, p,, + popI . . f pn-2 

A normal term is an xi-normal term for xi a generator. We will blur the distinction, 

when no confusion should arise, between such terms and the members of 9(,) they 

represent. 

For a po-normal term popI . . . pn-l * p,,, define its associated sequence S(pop, . 

~~-1 * P,) to be (PO,PI,...,P~) if * = ., and if * = o, to be the infinite sequence 

(po,p1,...,pi,...) h W ere for all i > n, pi = pop1 . ..pi-_2. If (po,p,,. . ., pi) is 

an initial segment of S(po ... pn_l * p,,), then popI ... pi 3 popI . . . pn_l * p,,; in 

the case x = o and i > n this follows from i + 1 - n applications of the a o b 
= ab 0 a law. 

We have that for any initial segment (PO,. , pi) of an associated sequence, po . . . pi 

is a po-normal term. Note that for po E 9, distinct po-normal terms cannot have the 

same associated sequence: if the sequence is finite, this is immediate, and if it is infinite, 

say (po, PI,. , pi .), then it equals S(popl . pn_l opn) where either IZ = 1 or there 

is an i with pi < pop1 . . pi-2 and n is the greatest such i. 

If po..‘pnPl * pn, qo"'qm-I * qm are po-normal terms (so po = qo) define 

PO . . ‘Pn-l*Pn <La 40” .qm_l*q, ifeitherS(po.. . pn-l * p,) is a proper initial seg- 

ment of S(q0 . . . qm_I *q,,,) or there is an i with p;, ql coordinates of S(po pn-, *p,,), 

S(q0 . . .q,,-~ * qm), respectively, such that pj = qj (j < i) and p; 4 qi. 

Lemma 2.1. (i) Zf p = p. . . . pn-l * pn icy U p@Ormd term, 0 < j 5 n, and pj 4 qj, 

then p + po...pj_1q,. 

(ii> If P = PO . . pn- I * pn and q = qo . . qm- 1 *q,,, are po-normal terms (SO p. = q. ), 

then 

P 4 4 * S(P) < Lex S(q). 

Proof. (i) Let S(p) = (po,pI,... ), finite or infinite. Write pi = qi (i < j). We are 

done if for some r, po . . . pr is dominated by qo . . qj in a variable clash, so assume 

that it does not happen. Then in particular pi <L q,. We claim that 

for all i 2 j, PO”‘Pi-I Opi <L 4041 “‘qj. 

For the case i = j use pi <L qj and po...pj-l =qo...4i~I. Suppose i > j and the 

claim is true for i. Then qo”‘qj = (po...pi_I opi)ro...r,_, *ry >L (po...pL_, o 

Pi)ro ~Po~~~~~-~(~;~o)~~o~~~~~(po~~~p~-~~o). We have p;+l 3 po...p;-l. 
Cuse 1: pi+1 dominated by po . . . pi-1 in a variable clash. Then, as we are assum- 

ing cannot happen, po . . pipi+] is dominated by po . pi(po . pi_1 ), whence by 

40. . . qj, in a variable clash. 

Case 2: pi+, = po . pi- 1. Then qo . qj >L po . pi( po . pi_ 1 Q) = (po pI o 

Pi+1 PO >L PO ” pi O p~+l. 
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Case 3: pi+1 <L po..%pi_l. Then 40.. 'qj >L Po~~~P&~+IS) (for SOme s) >I_ 

PO ’ ’ pi O Pi+l. 

The claim suffices for part (i) of the lemma, as there is an i > j such that p = 

pO.“pi-I *Pi <L 40"'9]. 

(ii) (+) Let S(p) = ( PO, PI,. .), S(q) = (qo,ql,. ..), with PO = qo. If S(p) is a 

proper initial segment of S(q), then S(p) = (~0, ~1,. . . , p,), S(q) = (~0, p,, , p,, 

q/+1...) and P = PO...PT <L PO.. pfqr+l <L q. So assume for some least j with 

0 < j 5 n that pj + qj. Then we are done by part (i). 

(+) Since different normal terms p and q have different associated sequences, 

S(p) = S(q) implies p = q. So we are done by the (+=) direction and linearity 

of-i. 0 

Call a po-normal term po . pI1-l * pn normal if po is an Xi. 

In the language of and 0 with a constant symbol for each xi, define the no- 

tion of a division-form term (with respect to <) inductively as follows: For n > 0, 

popI . . . pn-l * pn is a division form term iff po is an x,, ~1,. . . , pn are division form 

terms, and pop1 . . . pn_l * pn is normal. Let DF = {p E PC,, : p has a representation 

as a division form term}. By Lemma 2.1 the representation is unique. If p, q E DF, 

then by Lemma 2.1 the question whether p + q, p = q or q + p is determined by a 

lexicographic comparison of the division form terms representing p and q. 

We define the notion of “decreasing division form” mentioned in the introduction. 

DDF consists of those members p of DF such that every component ab or a o b of the 

DF term representing p satisfies b 4 a. Equivalently, call a normal term po . . p,*- 1 *pn 

decreasing normal if, in the definition of normal, additionally p1 4 PO, and define a 

DDF term as in the preceding paragraph, replacing “normal” by “decreasing normal”. 

So a DDF term is either an Xi or a term of the form pop1 . . pn_l * p,, for some 

n > 0, where po is an Xi, pl + po, pi+2 3 po ... pi, pn 4 po ... pn_2 if n > 2 and 

* = o, and each pi is a DDF term. Then DDF = {p E W,, : p has a representation 

as a decreasing division form term}. 

Similarly define p-DF and p-DDF for p E PC,, as follows. We want the p-DF, 

p-DDF terms r to have first coordinate p if p <L r; otherwise the first coordinate 

will be an xi. So define, for q E PO,, a normal term for q with respect to p to be 

either a p-normal term q = pp~ . . . pn_l *pn, or a normal term q=xiul . ..u._I *u, 

where p $L q. Then the notion of a p-division form (p-DF) term, in the language with 

constant symbols for the variables and a constant symbol for p, is obtained hereditarily 

from the notion of a normal term for q with respect to p, in the same way that the 

notion of a DF-term is obtained from the notion of a normal term. Let p-DF = {q : q 

has a representation as a p-DF term}. Similarly define a decreasing normal term for 

q with respect to p, a p-decreasing division form (p-DDF) term, and p-DDF. Then 

if p is an x,, p-DF = DF, p-DDF = DDF. 

So there are two types of sequences used in building up p-DF terms. The next lemma 

expresses how to lexicographically compare two such terms u = UOUI . . un-l * u, and 
c = aoz’l . . . v,_ I * c, to determine whether u + v. 
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Lemma 2.2. (i) If ug = 00, then u 4 v is determined as in Lemma 2.1. 

(ii)Ifug=x,,, va=x, (n#m), thenu+v ifandonlyiJ’n > m. 

(iii) Zf uo = x,, uo = p, and x, # p (whence u XL p), then u 4 v if und only if 

u + p. 

Proof. (i) and (ii) are immediate. For (iii), if u 3 p, then since u 2~ p, p dominates 

u in a variable clash, thus v dominates u in a variable clash, so u -X v. 

For p E PC,), define Var(p) = {xn : x, occurs in p}. 

Lemma 2.3. (i) Ifp E DDF, L(p) =x,, then Var(p)C{x, : m > n}. 

(ii) If p E DDF, x, + p, then Var(p) C{X~ : k > m}. 

(iii) If q E p-DDF, then every proper subterm of the p-DDF term representing q 

is i q. 

Proof. We have that (i) implies (ii), since for L(p) = x, we must have IZ > m. 

(i) is proved by induction on DDF terms; suppose (i) is true for all subterms of 

p = POPI . . . pi-1 * pi, where po = x,. Since x, t pl, x, + L(pl), and since for 

i > 2, pi 3 po . . pi_2, L(p;) 5 x,; done by induction. 

For (iii) (by induction on p-DDF terms) if n > 0 and q = popIf.. pnPl * p,,, 

then pop1 . pn_l < q, and if n = 1, then pn 3 po 4 q, and if n > 1, then 

Pn 5 PO .‘. Pn-2 4 4. q 

Theorem 2.4. Suppose a, b E {xn : n < 01, a + b. Then tf p E DDF, then p E 

(a o b) - DDF. 

Proof. The method is similar to those in [21, 221. Let 141 (respectively lqlaoh) be the 

DDF-term (respectively, the a o b-DDF term) representing q, if one exists. Recall that 

an a o b-DDF term pop1 . . pi-l * pi is either a decreasing (a o b)-normal term (so 

po = (a o b)) or a decreasing normal term (so po is an x,), where in the latter case, 

Xjpl . ’ ’ pi-1 * pi 2~ a o b. Technically speaking, a o b is either a normal-DDF term 

of length 2 or an (a o b)-DDF term of length 1; no problems will arise by identifying 

these two terms. 

If p = ~0.. . p,, and q are (a o b)-DDF terms define q < p if either n = 0 and 

q+po,orn>Oandq3po...p,_1. 

Lemma 1. If p,q are (sob)-DDF terms, then q < p ifs the term pq is an (sob)-DDF 

term. Moreover, q << p implies pq >> p and Ip o qlaob exists. 

Proof. If p is the (a o b)-normal term (a o b)pl . . . ~~-~p,,, then clearly Ipq(a”b = 

pq >> p. Writing q = pn+l, we have that J(p o q)laob = (a o b)pl . pi_i o pi, where 

i < n + 1 is greatest such that p; < (a o b)pl . pi-2 (i = 1 if no i satisfies that 

condition). 
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If p = xkql . . qn the same statements obtain, where it is checked that in exactly 

the case xk = qo = a, q1 = b, qi = qo .. ‘qi_2 for 2 5 i < n + 1, q,+l = q, that 

lpoq\aob = a o b; otherwise (p o qluob 2~ a o b. This proves the lemma. 0 

Definition. For p,q E (a o b)-DDF define a relation p 7 q, by induction first on the 

(a o b)-DDF term for p, then on the (a o b)-DDF term for q (p 7 q will guarantee 

that Ipqjuob and Ip o qlaob exist). 

(a) If p = a o b or p is an xi, then p 3 q if and only if p S- q. 

(b) If p = pop1 . p,, for n > 0, then p 7 q if and only if either q << p, or q = 

po”‘pn_1rn’..rk_l*rk (possiblyk=n), where p,,?r,, and pnor,,<po...pn_I. 

(c> If p = POPI . pn_l 0 p,,, then p 7 q if and only if pn 7 q and p,, o q < 

Po...Pn-I. 

Lemma 2. For p,q,s E (a o b)-DDF 

(i) q < p implies p II q. 

(ii) p ? q implies p >- q. 

(iii) p 7 q 2 s implies p 7 s. 

Proof. (i) is by definition. (ii) and (iii) are proved by induction on p. For (ii), in the 

second clause of part (b) of the definition of p II q, p,, > r, holds by induction. And 

in part (c) of the definition p,, + q holds by induction and p + pn holds by Lemma 

2.3(iii). And for (iii), in the second part of clause (b), ifs = pa. . . pn_~snsn+l st_l * 

st with s, < r,, then by induction p,, 7 s,, and p,, o s, + pn o r,, < po . . . pn_l. 0 

Lemma 3. If p, q E (a o b)-DDF, p 3 q, then Ipqlnob, Ip 0 qlaob exist and pq 7 p. 

Proof. (By induction first on p, then on q) 

Case 1: p = (a o b) or p is an xk. This is by definition, as in Lemma 1. 

Case 2: p = ug.‘.u,. Then if q << p, we are done as in Lemma 1. So assume 
q = &j”’ U,_IU, . uk-_l * ok, as in part (ii) of the definition of 7. Suppose k > I?. 

Since u, 7 v,, by the induction hypothesis on p, Iu, o vnlaob exists, and for each v,, 

v; + q by Lemma 2.3(iii), so p 1 vi by Lemma 2, so Ipvilaob exists by the induction 

hypothesis on q, Thus 

with, in the case * = 0, puk -X p(uoul . . . Vn’.‘Vk-2)= UOUI ~'.~k-l(~,"~,)~,+l(pu,,2) 

. . (puk_2) by the second part of Theorem 1.5. If * = ., Ipqlaob 7 p is clear. If 

* = o, we have PUk 7 p by the induction hypothesis on p and Pi& o p = p o vk << 

u(j . . . u,_I(u, o v,)v,,+I(~v,+~) . . . (pu,L~ ), by the last clause of Theorem 1.5. Finally 

when * = 0, IJJOq)aob = IPfjOPluob = UOUl “.U,_l~U,OV,~aob”‘(~Vk_l~aob~~~OVk~Uob, 

and if * = ., p 4 u0.f .u,_I(~,o~,)“‘(pvk__I), so lpoqlaob = Ipqlaobop. The case 

k = n is similarly checked. 
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Cuse 3: p = ~0. . u&l OUk. Then lukq(aob and IUk oq)aob exist by induction, Uk oq << 

llg . . ‘uk-I, so Jpql”“b = 240.. .zfk_&lkq~oob. For Ipqyb 7 p we have IU#b ? 

uk by induction and ukq 0 uk = uk 0 q < uo . uk_ 1, as desired, and Ip 0 qluoh = 

u0. . . &__l 0 I& 0 #“, with similar verifications. 0 

Lemma 4. Suppose u E DDF and a t u. Then laulaob exists and laul”oh 7 a. 

Proof. (By induction on u). If u’ is a component of u, then u + u’ by Lemma 

2.3(iii), so a + u’ and the lemma is true for a and u’. We check the main case u = 

b/o.. . Ct_l oL,. Then la~l~‘~ = (aob)Gola/l laoh. . . la/,_, luoholadrlaob, an (sob)-normal 

term, each laeiI”“b existing by induction. To see Ia~l”‘~ 7 a, we have ja~?I”“~ 7 a 

by induction and ad, o a = a o /, 5 a(beo.. . (,_I ) = (a o b)do(afl)~. (a/(-I), as 

desired. 0 

For the theorem, we show by induction on DDF-terms p that lplaob exists. If 

L(p) # a, i.e., p = x,uo .. u,,_I * urn with x, # a, then by induction Ipjaoh = 

x,IuOlaoh . . Iu,_ 1 looh * lu, laob. Similarly if p = au0 . . . urn_1 * u,~ but ug is not of the 

form bvo . c&l * tik for some k > 0, we are done by induction. And la(bvo . vk)co 

Cr_] *c$ob = (~ob)lv$“~lav~ laoh. . lavklaob)cOlaob~. Ic,._l laob * (c,luob. So we are 

left with the cases where p has one of the forms a * (b o u), a(b o U)CO . . q-1 * ck, 

a*(buo...u,_i ou,), a(buo-..u,_l ou,)co... ck- 1 * C,Q. We look at the cases requiring 

the lemmas and leave the others to the reader. 

For p = a(b o U)CO . ck_1 * ck, we have la(b 0 u)laoh = (a o b)lu(aoh o ab. We 

claim ((a o b)lulO” o ab) 7 CO. Since CO 5 a it suffices by Lemma 2(ii) to show 

((a o b)lulnob o ab) 7 a. We have ab 7 a and ab o a = a o b < (a o b)lu)aob, as desired. 

Thus la(b o u)l sob 7 CO so by Lemma 3 la(b o u)cOlaoh exists and is 7a(b o u) ? cl. 

Iterating Lemma 2(ii) and Lemma 3 k times in this manner yields that jplaoh exists. 

For p = a(buo . . . U,_l 0 u,)co ” ‘ck__l * ck, we have Y = a(buo. . ‘IA,_1 0 24,) = 

(a o b)uo(aul ) . . . (au,_l ) o (au,) and claim that ly)uoh 7 CO. By Lemma 3, ~uu,~“‘~ 7 

a k co, so lau,l=Oh 7 co and au, o CO 3 au, oa = a o u, 5 a(buo...u,_2) = 

(a o b)uo(au, ). . (au,_z). This proves the claim and finishes the theorem by iterating 

Lemmas 2(ii) and 3 as in the previous case. 0 

For i = 1,2,..., CJ~ the ith generator of B,, define 

(xj__lyl =x;-IX,, (Xj)l’ = Xi_ 1, 

(xk)” =xk (k # i - 1,i). 

Then because the xi’s are free generators of PCzJ, this map extends to a map u + uu8 

from PC,) to PC1,. 

Theorem 2.5. For p, q E DDF, i = 1,2,. . . 

(i) p 4 q ti p”i 4 4"' 
(ii) p 5 pa,. 



R. Lmeri Journal of Pure and Applied Algebra 108 (1996) HI-98 93 

Proof. Let a = xi-i, b = Xi, so (a o by = u o b. By Theorem 2.4, it suffices to prove 

(i) and (ii) for all p,q E (a o b)-DDF. 

For (i) we show by induction on p E (a o b)-DDF that for all q E (a o b)-DDF, 

p 4 q + ~‘1 -X qcl (the (+) direction then follows by linearity of 4). 

Let p be pop1 . p,,-1 * pn in (ao b)-DDF, where po is either ao b, some generator 

e different from a and b, b, or a, and p’l = p: p;r’ . . p:_, * p,“’ is a p: -decreasing 

normal sequence by the induction hypothesis. 

Now suppose p 4 qo . qk__l * qk, the a o b-DDF term for q; to show pa8 3 q”‘. 

If po = qo, let j < n be least such that pj 4 the jth member qj of q’s associated 

sequence. Then p; = q;‘, L < j, and p,“’ 4 q? by induction, so by Lemma 2.1(i) 

p”’ 4 4”‘. 

So assume po # qo. We check the cases po = b and qo is a or a o b, po = a and 

qo = a o b; the other cases are either impossible or are cases where pal is dominated 

by quf in a variable clash. In the po = b case (with n 2 l), pl 4 p. so L(p,) is a 

generator c + b, and we are done by a variable clash here as well. 

We claim that if po = a, then p 4 pun i a o b, which will prove the last case 

po=a,q0=uob.Notethatpl~blestuob<~p.Thusp~~=ubp~~~~p,“_,*p~ 

is, by that fact and the induction hypothesis, an a-decreasing normal term (i.e., of 

length IZ + 2). Since po = a the condition n = 1, pl = b and * = o is disallowed, 

whence Lemma 2.1(i) gives put + a o b. To show p 4 pal, we have L(p,) 3 b. If 

L(pl ) 4 b, then we are done by a variable clash. If L(pl ) = b, then pI = b (otherwise 

pl = bso. ..s,_l *s, and uob <L p). Then 

pat =ubup,“‘@..p;_, *p,“‘> 

Let IJO = U, 01 = b, Vj+z = VOU~ . II], SO for j > 1, P, = Zj_,(u,b). Then by 

induction on j, (~0 . vj)ui = vo ’ vj+l . If for every j 5 n, pj = rj, then * # o (lest 

p=uob), so p=vO...ljn <vo..+ V,V,+I = pai’. Finally, if for some least j, pj -C ~i 

(note j > 2), then put 2~ (po...pj-l)“f = (~o...vj_l)‘~ = L’o...c~_~c~, which is + p 

by Lemma 2.1(i). This proves (i). 

For (ii), we prove p 3 p”’ by induction on p E (a o b)-DDF. Writing p as in part 

(i), if po = a o b or po is a generator different from a and b, p 5 pal by the induction 

hypothesis and Lemma 2.1(i). If po = b, then puJ dominates p in a variable clash, 

and for the case po = a, p + put was proved in part (i). 0 

Theorem 2.6. IJ’ p E DDF, then for all i > 1, (pp E DDF. 

Proof. First note that the definitions and lemmas about (a o b)-DDF in Theorem 2.4 

apply to the simpler situation of DDF as well. Namely, for p E DDF write IpI for 

the DDF representation of p, and let, for p,q E DDF, q < p if either p is an Sk 

and q < p or IpI = pop1 . . . pn for some it > 0 and q 3 ~0.. . P,,-~ and let p 7 q 
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(p, q E DDF) hold if one of the following holds: 

(i) P 29 4. 

(ii) IPI = POPI ... pn, 141 = POPI “‘Pn-lqn...qk-l *qk, with pn 7qn and (p,,oq,,) 
< p(l...pn-1. 

(iii) IPI = POPI ...P+I 0 pn, pn 14, pn oq +c popI .‘.pnll. 

Then, as before, if p,q,s E DDF, p 7 q + s, then p 7 s, and p 7 q implies that pq, 
p 0 q E DDF and pq 7 p. 

LHIUna. If p E DDF, p + xkXk+, , then p 1 xkXk+l. 

Proof. If p 3 xk, then p << &xk+l. The other case is p = xkro.. r,_l + r,,, with 

Q + xk+r; then ro c Xkft and (xk+l 0 Q) < xk. 0 

Fix i in the theorem, and let a = xi_ 1, b = xi. 

We prove by induction on p E DDF that (p)“’ E DDF. If p is an xk we are done, 

so let Ipl = POPI ...P~-I * pn, for n > 0. If po is any variable other than a, then by 

the induction hypothesis and Theorem 2.5(i), IpG / = Ip: ( . . Ip:_ I 1 * Ipz /. 

So suppose po = a, then 

(P)“’ =aMPl)“‘~~.(P,I-l)“‘*(Pn)~ (*> 

where by Theorem 2.5(i) the sequence (ab)( PI )“I ’ . . ( pn_ 1 )“I *( pn)O’ is (&)-decreasing 

normal. We have L(pl ) 3 b; if L(pl ) + b, then by Lemma 2.3(ii), (PI )“I + a so the 

sequence (*) is a-decreasing normal, as desired. 

So assume p1 = btl . ..&._I * tm, then ip;r’) = alt~I...lt~_,i * ItzI. Since tl i b, 

Lemma 2.3(ii) gives t: + b, whence py 4 ab. By the lemma, then, ab 7 (PI)“‘. 

Thus the statement which immediately preceeds the lemma may be iterated n times 

on the expression (*), to obtain that pR E DDF. q 

Theorem 2.7. The maps u --) ugi, restricted to DDF, induce u partial group action 

of& on DDF. 

Proof. We have that x~‘~+“” and x~+“‘~‘+’ equal 

xk(xk+lxk+2) (k=i- 1) 

xk-lxk (k = i) 

Xk-2 (k=i+l) 

xk (otherwise) 

and for j > i + 1, xi”’ and x,“‘“’ are 

Xk” (k = i - 1,i) 

*I 
xk (k =j - 1,j) 

xk (otherwise) 

By Theorem 2.5(i) the maps u + u”-‘, restricted to DDF, are one-to-one. Let 

w be a braid word &‘o* . . IT:‘. 10 II Define the domain of w to be the set of d E 
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DDF such that for each j < m, (((d)“:‘)“:’ ...)“:’ exists and lies in DDF. And for 

d E domain w write d” = (((d)“~‘)..~)‘~‘. We need to check that if w and w’ are 

equivalent braid words, d E domain w n domain w’, then d” = d”‘. It suffices to show 

there is a derivation of the equivalence of w and w’, with d E dom w” for every 

intermediate word w” in the derivation. This follows from Garside [14]. Namely, let 

w A 2: mean that u can be obtained from IV via applications of the rewriting rules 

o,~‘cJ, 58, O;O~ AS, Oio, Ao,o~ (i > j + l), and Oigi+tUi A~;+t~i~i+l. Note that, 

by Theorems 2.5(i) and 2.6, if w 5 v, then domain w C domain ti. So it suffices to show 

that if w and w’ are equivalent, then there is a v with w A v, w’ A L’. Garside defines 

d,* = al(o2ol)(o3~2ol)...(an_l ...cT~(T~oI), and shows for i < n that OidnAd,gn--,, 

+A,, 5 Ano;& and rr; -r, A,c for some negative braid word c (i.e., a word in {o; ’ : 

1 5 m < n}). He then derives that for w equivalent to UJ’ there is a 2: (of the form 

dc, d a positive word, c a negative word) with w: c’, w’ 3 o, as desired. 0 

3. 

We recall the definitions [6] of the linear ordering < on B,. Let % be a left 

distributive (or C) algebra. Let %” be the set of sequences Z = (CO, cl,. , c,, .) from 

%. Then the action of a braid generator on V”, 

(CO,. .,Ci__l,Cr,. . , C,,...)” = (CO,...,C~-ICi,Ci__l,..., C, ,...) 

extends, when %’ satisfies left cancellation, to a partial action of B, on %‘” (again, 

Garside’s result is used in seeing that c?, when defined, is unique). We use the same 

notation F, p” for this action and the one defined in the last section; since they are 

on different sets, no confusion should arise. 
_- 

Define for c, d E VP, c’ ~~~~ d’ if there is an i with ci # d,, and for the least such 

i, c; <r dj. 

Theorem 3.1 (Dehomoy [6]). Let %? be an d, or YK. 

(i) For any cco,...,q, E B, there is a c’ E W’ such that for all i < n, (Z)“f exists. 

(ii) Define CI -C /3 H for somelany c’ such that c’” and d exist, P ~~~~ $; then < 

is a linear ordering on B, (which is independent of %?). 

(iii) < is the unique linear ordering on B, such that for all q/I,;1 E B,, fl < 

:’ u c$’ < ay, and such that oicI > fi tf r and /3 are in the algebra generated by 

{fJj 1 j > i}. 

(iv) P < y H p-‘-y > E, where c( > E H CI can be expressed by a braid word in 

which the generator with least subscript occurs only positively. 

Part (iv) is implicit in the construction in [6, Lemma 7.11. 

We will work with the case % = Ypo,. Let x’ = (x0,x1,. . . ,x,, . . .) be the sequence 

of generators of Ypo. For c( E B,, j3 E (9,)‘” such that ( j)” exists, let (( $)“)k be 
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the kth coordinate of (5)“. Let Rev : B, --f B, be the reversing antiautomorphism: 

Rev (a*‘) = a+’ Rev (/+) = (Rev y)(Rev ,U). 

The ‘following ‘was also noted, for the case of the action of B, on the free group 

under conjugation, in Larue [ 191. 

Lemma 3.2. If u E BL,, then for ull k, ((T)X)k = (x~)~~” 2. 

Proof. The lemma holds if x is a CJ~. Suppose LX = hoi where p E B& and the lemma 

holds for p. Then (2)” = ((x’)“)ui = (xrv’,xpevP,. . .)” = (xr b,. . . ,x~~~~,x~‘\;~x,~” B, 

Rev/i Revfi 
xi-1 ‘xi+1 ,... ). If n # i - l,i, then .a~~“~ = xR’RevB = xyz, and x,?Y~x~~ = 

(+I&) 
a,Rev fi I& p zz Xi_, = xp_“;“. Finally, xp_“\;” = x,?~~“~ = XP I. 0 

The proof works for any (x E B, such that (2)” exists, but this improvement is 

vacuous by the following result due to Larue. 

Theorem 3.3 (Larue [20]). For 2 < N 5 30, 3 E BN, (xi : i < N) the sequence oj 

generators of 9p~, (x, : i < N)” exists if und only if LY E Bi. 

The faithfulness of the action of B, on (%)“’ follows from Theorem 3.1(i) and (ii). 

We derive the faithfulness of the action of B, on DDF. 

Theorem 3.4. If‘ ‘x, /I E B,, u # /I, then jbr some d E DDF, d’ # dl’. 

Proof. We have Rev CL # Rev B. Let m be such that x, p E B,. Let A = A,(= Rev A, 

[ 141). Then pick n sufficiently large so that Rev a . A”, Rev b . A” E B,f. Namely [ 141, 

for each i < m, A can be written as G, . ;J for some y E BA. That, together with 

a/A = do,_/ (1 5 / 5 m - l), gives the existence of such an n. Then by Theorem 
3.l(ii), (~)R~v r.d” f (~)Re~/~‘d”. So by Lemma 3.2 there is an i with x,+“‘.’ # x~““. Take 

d = xf’” (a member of DDF by Theorem 2.6). 0 

Theorem 3.5. If ct E B,, p E BI&, /I’ # I, then /IX > 1. 

Proof. It suffices to show that for all i, oic( > a. First we show it when a E BL. 

By Theorem 3.l(ii) there is a least k with u = ((.?)‘)k # ((~)‘~‘)k = C, and either 

u CL L‘ or v CL u; we want to show the former, it will suffice to show u 5 v. We 

have u = (~k)~~“~, v = (~k)~~” “u1 by Lemma 3.2. By applications of Theorem 2.6, 

xpa E DDF. So u 3 v by Theorem 2S(ii), giving the theorem when c( E BL. 

For IX E B,, pick, as in Theorem 3.4, m and n, with m > i, such that for A = A,,, we 

have A”a E B+,. It suffices by Theorem 3.l(iii) to show that A”(T~M > A”%. Assuming 

without loss of generality that n is even, then A”aia = oiA”E, and we are done by the 

first part of the theorem. 0 

For /$a E B& say that p is a proper subsequence of E if 51 = 6061 . .6,, for 

some sequence of generators 6i and for some 0 5 io < . . < if 5 n with G < n, 

p = 6,,6i, ’ ’ dj,. 
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Corollary 3.6. If j3, M E B&, fl a proper subsequence of r, then fi < 2. 

Proof. (By Theorems 3.5 and 3.l(iii), by induction on the unique n such that x is 

the product of n many generators.). Since E < oi, the atomic case holds. If p is an 

initial segment of a, we are done. So suppose for some least r that i,. > r. Then 

hi, ‘.‘di, I dr+ldr+2 ” .6, (by induction) < &.&.+~ d, (Theorem 3.5). Multiplying 

ontheleftby&...6,_t givesp<a. 0 

By Theorem 3.5 the linear ordering < extends the partial ordering on B, used by 

Elrifai and Morton in [12] (they defined ,G < r +-+ for some ;‘, 6 E Bf, with at least 

one of “/, 6 different from E, CI = y/IS). 

Corollary 3.1. For N jinite, Bi is well ordered under <. 

Proof. Else there would be a sequence ~0 > ‘~1 > > a, > . with xj = 

hjj,06j,1 . . dj ,, , each Sj,, E (01,. ,CJ.N-I}. Applying (a special case of) Higman’s 

theorem [15],‘there exist j < k with 6j,o . S,,,, a subsequence of 6k.0 . ~?k,~~, con- 

tradicting Corollary 3.6. 0 

Burckel [3] has recently given a tree representation for the members of B;, showing 

that the ordinal of Bf is w”~-~. 

Theorems 3.l(ii), T.3, and Corollary 3.7 imply the following result. 

Corollary 3.8. For 2 5 N < co, (xi : i < N) the sequence of generators of .Rji, 
{(Xi : i < N)” : ct E BN and (x, : i < N)“exists} is well ordered under cLex. 
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