Braid group actions on left distributive structures, and well orderings in the braid groups

Richard Laver ${ }^{1}$
Mathematics Department, University of Colorado, Boulder, CO 80309, USA
Communicated by A. Blass; received 15 February 1994; revised 2 April 1995

0.

For $2 \leq N \leq \infty$ let B_{N} be the braid group on N strands; B_{N}, with generators $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{i}, \ldots(1 \leq i<N)$, is given by the relations $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$ and $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}(j>i+1)$. Two basic group actions of B_{N} are as follows. B_{N} acts on the free group (F, \circ) on generators $\left\{h_{i}: 0 \leq i<N\right\}$ by $\left(h_{i-1}\right)^{\sigma_{i}}=h_{i-1} \circ h_{i} \circ h_{i-1}^{-1}$, $\left(h_{i}\right)^{\sigma_{i}}=h_{i-1},\left(h_{j}\right)^{\sigma_{i}}=h_{j}$ for $j \neq i-1, i$, and $(u \circ v)^{\sigma_{i}}=(u)^{\sigma_{i}} \circ(v)^{\sigma_{i}}$ [1]. If (G, \circ) is any group, B_{N} acts on G^{N} by $\left(\left\langle g_{0}, \ldots, g_{i-1}, g_{i}, \ldots, g_{k}, \ldots\right\rangle_{k<N}\right)^{\sigma_{i}}=\left\langle g_{0}, \ldots,\left(g_{i-1} \circ g_{i} \circ\right.\right.$ $\left.\left.g_{i-1}^{-1}\right), g_{i-1}, \ldots, g_{k}, \ldots\right\rangle_{k<N}$ (see [24, p. 157]).

More generally, the braid groups act, or partially act, in various ways on certain left distributive algebras and their direct powers. A left distributive algebra is a set with a binary operation on it satisfying the left distributive law $a(b c)=(a b)(a c)$ (for example, for a group (G, \circ), the conjugation operation $g h=g \circ h \circ g^{-1}$ satisfies the left distribution law). Brieskorn [2] expressed a number of actions of B_{N} as generalizations of the second of the above examples: if \mathscr{C} is an automorphic set (a left distributive algebra in which left multiplication by any element is bijective), then the condition $\left\langle c_{0}, \ldots, c_{i-1}, c_{i}, \ldots, c_{k}, \ldots\right\rangle^{\sigma_{i}}=\left\langle c_{0}, \ldots,\left(c_{i-1} c_{i}\right), c_{i-1}, \ldots, c_{k}, \ldots\right\rangle$ induces a group action of B_{N} on \mathscr{C}^{N}. See $[2,3,16,18,27,29]$ for some examples of this related to knots and braids.

For κ a cardinal, let \mathscr{A}_{κ} be the free left distributive algebra on κ many generators. Then \mathscr{A}_{k} is not an automorphic set, but it does satisfy left cancellation, as follows. For \mathscr{C} any left distributive algebra, $b, c \in \mathscr{C}$, define

$$
b<_{\mathrm{L}} c \Leftrightarrow \text { for some } b_{0}, b_{1}, \ldots, b_{n} \in \mathscr{C}, c=\left(\left(\left(b b_{0}\right) b_{1}\right) \cdots b_{n-1}\right) b_{n}
$$

Let $\mathscr{A}=\mathscr{A}_{1}$. Then $<_{\text {L }}$ linearly orders $\mathscr{A}[4-6,21]$. It follows that \mathscr{A} satisfies left cancellation. These and similar facts about the \mathscr{A}_{κ} 's $(\kappa>1)$ are recalled in Section 1.

[^0]For \mathscr{C} a left distributive algebra satisfying left cancellation, as noted by Dehornoy in [6], the action of B_{N} on \mathscr{C}^{N} is still a partial group action. That is, for \vec{c} in \mathscr{C}^{N}, the equation $\vec{d}^{\sigma_{i}}=\vec{c}$ has at most one solution, so $\vec{c}_{i}^{\sigma_{i}^{-1}}$ is unique when defined. Also needed to check that this action is well defined is a result of Garside [14] (see proof of Theorem 2.7 below). Write $\omega=\{0,1,2, \ldots\}$. Dehornoy ([6, Theorem 7.6, Theorem 3.1 below]) proved, by means of the partial action of B_{∞} on $\mathscr{A}^{(1)}$, that the linear ordering $<_{L}$ on \mathscr{A} induces a linear ordering $<$ on B_{∞}. For a combinatorial characterization of $<$, define, for $\alpha \in B_{\infty}, \varepsilon$ the identity of $B_{\infty}, \varepsilon<\alpha$ if and only if α can be represented as a nonempty braid word $w=\sigma_{i_{1}}^{ \pm 1} \cdots \sigma_{i_{\sim}}^{ \pm 1}$ such that the generator with least subscript appearing in w occurs only positively. Then for $\alpha, \beta \in B_{\infty}, \alpha<\beta$ holds if and only if $\varepsilon<\alpha^{-1} \beta$. So $i<j$ implies $\sigma_{i}>\sigma_{j}$ and, for example, $\sigma_{i}^{-1} \sigma_{i+1}<\varepsilon<\sigma_{i+1}^{-1} \sigma_{i}$.

Let B_{N}^{+}be the set of positive braids in B_{N}-braids which can be represented by a word (possibly empty) in which the generators occur only positively. Thus Dehornoy's ordering extends the notion of positive braid: for $2<N \leq \infty, B_{N}^{+}$is a proper subset of $\left\{\alpha \in B_{N}: \varepsilon \leq \alpha\right\}$. The ordering is preserved under left translations; this yields, as remarked by Larue, a combinatorial proof that the braid groups are torsion free.

In this paper a result about a free left distributive version of Artin's group action is proved; this is then used to derive a result about $<$. Let $x_{0}, x_{1}, \ldots, x_{n}, \ldots$ be the generators of $\mathscr{L}_{(w}$. Define $x_{i}^{\sigma_{i}}=x_{i-1}, x_{i-1}^{\sigma_{i}}=x_{i-1} x_{i}$, and $x_{j}^{\sigma_{i}}=x_{j}$ for $j \neq i-1, i$. This does not induce a partial action of B_{∞} on $\mathscr{A}_{\omega}\left(\left(x_{0} x_{0}\right)^{\sigma_{1}}=\left(x_{1} x_{0}\right)^{\sigma_{1}}\right.$ for example $)$. We define a subset of \mathscr{A}_{ω} - those members of $\mathscr{A}_{(0}$ which can be expressed in "decreasing division form". Decreasing division form ($D D F$) is defined with the aid of a natural linear ordering \prec on $\mathscr{A}_{(1)}$.

Theorem. The action of the generators given above induces a partial group action of B_{∞} on $D D F$. This action is order preserving, faithful, and for all $w \in D D F$ and $x \in B_{\infty}^{+}, w \preceq w^{\alpha}$.

To define $D D F$, as in the case of the normal forms of [21,22], we will not work in \mathscr{A}_{ω} but in \mathscr{P}_{ω}, the result of enlarging $\mathscr{A}_{(1)}$ to include a composition operation, and work with the $D D F$ of that larger algebra.

Flrifai and Morton [12] define a partial ordering on $B_{\infty}: x$ is less than β in their sense if and only if there are γ and δ in B_{∞}^{+}, at least one of γ, δ different from ε, with $\beta=\gamma \alpha \delta$.

Theorem. The ordering < extends the ordering of Elrifai and Morton. For N finite, B_{N}^{+}is well ordered under $<$.

The parts of Section 1 needed for Sections 2 and 3 are Theorem 1.5 and basic properties of left distributive algebras (Proposition 1.1). Theorem 1.5 states the linear ordering on free left distributive algebras [4-7, 21, 22] in a general form. It is the version in [7] generalized to the \mathscr{P}_{k} 's; it follows from Theorems 1.3 and 1.4. Theorem 1.3 was derived from large cardinals in [21], and without them in [6]; a short proof is given in [19]. A short account of parts of Theorem 1.4 may be found in, e.g., [9].

1.

We recall some facts from [4-7, 21, 22], and related results.
In a language with two binary operation symbols \cdot and \circ, let, writing $u v$ for $u \cdot v, \Sigma$ be the set of laws $\{(a \circ b) \circ c=a \circ(b \circ c),(a \circ b) c=a(b c), a(b \circ c)=a b \circ a c, a \circ b=a b \circ a\}$. Then Σ implies the left distributive law $(a(b c)=(a \circ b) c=(a b \circ a) c=a b(a c))$.
Two models of Σ are (G, \circ, \cdot) where G is a group, \circ is the group operation and - is conjugacy, and, from set theory, $\left(\mathscr{E}_{i}, \circ, \cdot\right)$, where for i a limit ordinal \mathscr{E}_{i} is the set of nontrivial elementary embedding $j:\left(V_{\lambda}, \varepsilon\right) \rightarrow\left(V_{\lambda}, \varepsilon\right)$, ○ is composition, and $j \cdot k=\bigcup_{x<\lambda} j\left(k \cap V_{x}\right)$. Let \mathscr{P}_{κ}, for κ a cardinal, be the free algebra satisfying Σ on generators $\left\{x_{\alpha}: \alpha<\kappa\right\}$, and let $\mathscr{P}=\mathscr{P}_{1}$.

Let A_{κ} (respectively, P_{κ}) be the set of terms in the variables $x_{0}, x_{1}, \ldots, x_{\chi}, \ldots(\alpha<\kappa)$ using the operation - (respectively, • and \circ). An example of such a term is $\left(x_{2} x_{1}\right) \circ$ $\left(x_{2}\left(x_{3} \circ x_{0}\right)\right.$). Then $\mathscr{A}_{\kappa}=A_{\kappa} / \equiv \mathscr{A}_{k}$ and $\mathscr{P}_{\kappa}=P_{\kappa} / \equiv \mathscr{P}_{\kappa}$, where for $u, v \in A_{\kappa}, u \equiv . \alpha_{k} v$ iff v is the result of repeated substitutions in u using the left distributive law, and $\equiv \varphi_{N}$ is similarly defined by substitutions using Σ.

Let \mathscr{C} be an algebra satisfying Σ (or a left distributive algebra, in which case delete the parts of the following definitions involving \circ).

For $c_{0}, c_{1}, \ldots, c_{n} \in \mathscr{C}$, write $c_{0} c_{1} \cdots c_{n}$ for $\left(\left(\left(c_{0} c_{1}\right) c_{2}\right) \cdots\right) c_{n}$ and write $c_{0} c_{1} \cdots c_{n-1} \circ c_{n}$ for $\left(\left(\left(\left(c_{0} c_{1}\right) c_{2}\right) \cdots\right) c_{n-1}\right) \circ c_{n}$. Let $u=c_{0} c_{1} \cdots c_{n-1} * c_{n}$ mean that $u=c_{0} c_{1} \cdots c_{n}$ or $u=$ $c_{0} c_{1} \cdots c_{n-1} \circ c_{n}$. Then for any $u \in \mathscr{P}_{\kappa}, u$ can be written in the form $p_{0} p_{1} \cdots p_{n-1} * p_{n}$ where p_{0} is a generator.

For $u, v \in \mathscr{C}$, say that u is a left component of $v\left(u<_{\mathrm{L}} v\right)$ if there are $u_{0}, \ldots, u_{n} \in \mathscr{C}$ with $v=u u_{0} u_{1} \cdots u_{n-1} * u_{n}$. Then $<_{\mathrm{L}}$ is a transitive relation on \mathscr{C}.

We summarize some facts (\mathscr{C} is still an arbitrary left distributive algebra or an algebra satisfying Σ).

Proposition 1.1. (i) For $p \in \mathscr{P}_{\kappa}$ there is a unique α such that for some $p_{0}, \ldots, p_{i-1} \in$ $\mathscr{P}_{\kappa}, p=x_{\alpha} p_{0} \cdots p_{i-2} * p_{i-1} ;$ write $x_{\alpha}=L(p)$.
(ii) For $a \in \mathscr{A}_{\kappa}$ there is a unique α and n such that for some $a_{0}, \ldots, a_{n-1} \in \mathscr{A}_{k}$. $a=a_{0}\left(a_{1}\left(\cdots\left(a_{n-1} x_{x}\right)\right)\right)$; write $x_{\alpha}=R(a), n=$ depth a.
(iii) For $w \in \mathscr{P}_{\kappa}$ there is a unique n such that for some $a_{0}, \ldots, a_{n} \in A_{K}, w \equiv p_{:}$ $a_{0} \circ \cdots \circ a_{n}$.
(iv) If $a, b, c \in \mathscr{C}, b<_{\mathrm{L}} c$, then $a b<_{\mathrm{L}} a \circ b<_{\mathrm{L}} a c$.
(v) For $w \in P_{\kappa}$, let a cut of w be $a c \in P_{\kappa}$ gotten by truncating w at an occurrence of a variable in w. Thus the cut of $x_{0} x_{1}\left(x_{2} x_{1} \circ\left(x_{1} x_{3} \circ x_{2}\right)\right)$ at the last occurrence of x_{1} is $x_{0} x_{1}\left(x_{2} x_{1} \circ x_{1}\right)$. Then if c and d are cuts of w with c strictly to the left of d. then $c<_{\mathrm{L}} d$.

Theorem 1.2 (Laver [21]). For $a, b, a_{0}, \ldots, a_{m}, b_{0}, \ldots, b_{m} \in A_{\kappa}$
(i) $a_{0} \circ \cdots \circ a_{m} \equiv \psi_{k} b_{0} \circ \cdots \circ b_{m}$ if and only if $a_{0}\left(a_{1}\left(\cdots\left(a_{m} x_{x}\right)\right)\right) \equiv a_{n} b_{0}\left(b_{1}\left(\cdots\left(b_{m} x_{x}\right)\right)\right)$ for somelall generators x_{x}.
(ii) $a \equiv p_{k} b$ if and only if $a \equiv_{\mathscr{A}_{k}} b$.
(iii) $a<_{\mathrm{L}} b$ as members of \mathscr{P}_{κ} if and only if $a<_{\mathrm{L}} b$ as members of A_{κ}.

The proof in [21, Section 1], for $\kappa=1$ works without change for arbitrary κ. By (ii), identify \mathscr{A}_{k} as a subalgebra of \mathscr{P}_{k} (restricted to \cdot). Write \equiv for $\equiv \mathscr{\mathscr { P }}_{k}, \equiv \mathscr{A}_{k}$.

Say that \mathscr{C}, a left distributive algebra or an algebra satisfying Σ, is irreflexive if for all $c \in \mathscr{C}, c \nless \mathrm{~L} c$. Common examples of left distributive algebras (such as groups under conjugation, vector spaces where $v \cdot w=t v+(1-t) w$ (t a fixed scalar)) are idempotent and thus not irreflexive.

Theorem 1.3 (Laver [21], Dehornoy [6] in ZFC). For every cardinal $\kappa, \mathscr{A}_{\kappa}$ and \mathscr{P}_{κ} are irreflexive.

To prove this, note that if there exists an irreflexive left distributive algebra, then the \mathscr{A}_{k} 's are irreflexive, and the \mathscr{P}_{κ} 's are casily scen to be irreflexive also (if $p \in$ $\mathscr{P}_{\kappa}, p=p p_{0} \cdots p_{n-1} * p_{n}$, and $x_{\alpha}=L\left(p_{0}\right)$, then $p x_{\alpha} \in \mathscr{A}_{\kappa}$ and $p x_{\alpha}<_{\mathrm{L}} p x_{\alpha}$ would hold). In [21] it was shown that the algebras \mathscr{E}_{λ} mentioned above are irreflexive, and, for $j \in \mathscr{E}_{i}$, that the subalgebra of \mathscr{E}_{i} generated by j under \cdot (respectively, under \cdot and \circ) is isomorphic to \mathscr{A} (respectively, \mathscr{P}). That there exists a λ with $\mathscr{E}_{;} \neq \emptyset$ is a large cardinal axiom; nonempty \mathscr{E}_{i} 's cannot be proved to exist in ZFC (some facts about the \mathscr{E}_{λ} 's appear in $[8-11,17,21,23,25,26,28$, 30]). Then Dehornoy [6] proved without using large cardinals that a certain left distributive algebra on the braid group is irreflexive, giving a proof of Theorem 1.3 in ZFC. Larue [19] has given a shorter proof of the irreflexivity of the algebra in [6].

For $\kappa=1$, a stronger statement holds: $<_{\mathrm{L}}$ linearly orders \mathscr{A} and \mathscr{P}. This was first proved in [21] (with the irreflexivity part coming via the large cardinal axiom). Dehornoy $[4,5]$ around the same time proved, independently and by a different method that for every $a, b \in \mathscr{A}, a \leq_{\mathrm{L}} b$ or $b \leq_{\mathrm{L}} a$ (from Theorem 1.4(iii) below). Thus he was only missing irreflexivity for the proof of the linear ordering. We summarize Dehornoy's method, and some applications of it using irreflexivity, in Theorem 1.4. We summarize the method of $[21,22]$ in Theorems 1.6 and 1.7. Either of these two methods, combined with the ZFC proof of Theorem 1.3 in [6], give a proof in ZFC that $<_{\mathrm{L}}$ linearly orders \mathscr{A} and \mathscr{P}. This linear ordering is stated here in a general form in Theorem 1.5.

For $u, v \in A_{\kappa}$ write $u \rightarrow v$ to mean that v can be obtained from u by a sequence of substitutions, each of which replaces a subterm of the form $a(b c)$ by $(a b)(a c)$. Then $u \rightarrow v$ implies $u \equiv v$. Note that if $u_{0} u_{1} \cdots u_{m} \rightarrow v$, then v is of the form $v_{0} v_{1} \cdots v_{n}$, where for all $i \leq m$ there is a $j \leq n$ with $u_{0} u_{1} \cdots u_{i} \equiv v_{0} v_{1} \cdots v_{j}$.

Theorem 1.4 (Dehornoy [4-7]). (i) \mathscr{A}_{κ} is confluent, that is, if $a, b \in A_{\kappa}$ and $a \equiv b$, then for some $c \in A_{\kappa}, a \rightarrow c$ and $b \rightarrow c$.
(ii) (From (i), Theorem 1.3, and the remark preceding this theorem) For $w \in$ $\mathscr{A}_{\kappa},\left\{u \in \mathscr{A}_{\kappa}: u \leq_{\mathrm{L}} w\right\}$ is linearly ordered under $<_{\mathrm{L}}$.
(iii) If $a, b \in A$, then either $a, b \rightarrow c$ for some c, or for some $c=c_{0} c_{1} \cdots c_{n} \in A$ with $n>0$, either $a \rightarrow c_{0}$ and $b \rightarrow c$ or $b \rightarrow c_{0}$ and $a \rightarrow c$.

The following remark about \mathscr{P}_{κ} will be used below: if $t<_{\mathrm{L}} w x$ in \mathscr{P}_{κ} and x is a generator then $t \leq_{\mathrm{L}} w$. Namely, for some generator $y, t y \leq_{\mathrm{L}} w x$, and $t y, w x \in \mathscr{A}_{\mathrm{h}}$. One has then that $t y$ is a cut of some word for $w x$. The latter word, by induction on derivations, must be of the form $w_{0}\left(w_{1}\left(\cdots\left(w_{n} x\right)\right)\right)$ where $w_{0} \circ w_{1} \circ \cdots w_{n} \equiv w$, from which it follows that $t \leq_{\mathrm{L}} w$.

For $p, q \in \mathscr{P}_{\kappa}$ say that p and q have a variable clash if there are $a_{0}, \ldots a_{n-1} \in A_{\kappa}$ $\left(n=0\right.$ allowed) and $x_{2} \neq x_{\beta}$ with $a_{0}\left(a_{1}\left(\cdots\left(a_{n-1} x_{x}\right)\right)\right) \leq_{\mathrm{L}} p$ and $a_{0}\left(a_{1}\left(\cdots\left(a_{n-1} x_{\beta}\right)\right)\right)$ $\leq_{\mathrm{L}} q$. Note that $a_{0}\left(a_{1}\left(\cdots\left(a_{n-1} x_{x}\right)\right)\right) \leq_{\mathrm{L}} a_{0}\left(a_{1}\left(\cdots\left(a_{n-1} x_{\beta}\right)\right)\right)$ cannot hold. Namely, they cannot be equivalent by Proposition 1.1 (ii), and if $a_{0}\left(a_{1}\left(\cdots\left(a_{n-1} x_{x}\right)\right)\right.$) $<_{1}$ $a_{0}\left(a_{1}\left(\cdots\left(a_{n-1} x_{\beta}\right)\right)\right.$), then by the above remark $a_{0}\left(a_{1}\left(\cdots\left(a_{n-1} x_{x}\right)\right)\right) \leq_{\mathrm{L}} a_{0} \circ a_{1} \circ \cdots \circ$ a_{n-1}, which contradicts irreflexivity. It follows that if p and q have a variable clash then $p \leq_{\mathrm{L}} q$ cannot hold: by Theorem 1.4 (ii) one would have $a_{0}\left(a_{1}\left(\cdots\left(a_{n-1} x_{x}\right)\right)\right)$ \leq_{L}-comparable with $a_{0}\left(a_{1}\left(\cdots\left(a_{n-1} x_{\beta}\right)\right)\right)$.

If \prec is a linear ordering of the generators, say that q dominates p (with respect to \prec) in a variable clash if there are a_{i} 's, x_{α}, x_{β} as above with $x_{\alpha} \prec x_{\beta}$ (we say that the pair $\left\langle a_{0}\left(a_{1}\left(\cdots\left(a_{n-1} x_{x}\right)\right)\right), a_{0}\left(a_{1}\left(\cdots\left(a_{n-1} x_{\beta}\right)\right)\right)\right\rangle$ witnesses $\left.p \prec q\right)$. Observe that if q dominates p in a variable clash, and $p \leq_{\mathrm{L}} p^{\prime}, q \leq_{1} q^{\prime}$, then q^{\prime} dominates p^{\prime} in a variable clash. Extend \prec to a relation \prec on \mathscr{P}_{κ} by

$$
p \prec q \Leftrightarrow p<_{\mathrm{L}} q \text { or } q \text { dominates } p \text { in a variable clash. }
$$

Dehornoy [7] derived from Theorems 1.3 and 1.4 that \prec linearly orders \mathscr{A}_{k}. We indicate the proof. To see, for example, that if $u, v \in \mathscr{A}_{k}$, then either $u=v, u<_{\mathrm{L}} v$, $v<_{L} u$ or u and v have a variable clash, let u and v be given by representatives (also called u and v) in A_{κ}. Let \tilde{u} and \tilde{v} be the members of A obtained from u and v by replacing all occurrences of variables by x_{0}. By the linearity of $<_{L}$ on \mathscr{A} we have, say, $\tilde{u} \leq_{\mathrm{L}} \tilde{v}$. By Theorem 1.4 there are $r_{0}, r_{1}, \ldots, r_{n} \in A$ with $\tilde{v} \rightarrow r_{0} r_{1} \cdots r_{n}$ and $\tilde{u} \rightarrow r_{0} r_{1} \cdots r_{i}$, where $i=0$ or n. Applying the same substitutions to u and v yields $v \rightarrow s_{0} s_{1} \cdots s_{n}, u \rightarrow t_{0} t_{1} \cdots t_{i}$. If for all $\ell \leq i, s_{t}-t_{f}$, then $u \leq_{L} v$ and we are done. Otherwise for some least $\ell, s_{\ell} \neq t_{\ell}$ (but $\tilde{s}_{f}=\tilde{t}_{\ell}=r_{f}$). This implies, by Proposition $1.1(\mathrm{v})$ that there is a variable clash between p and q. A checking of cases then gives transitivity of \prec on \mathscr{A}_{κ}, and the irreflexivity of \prec on \mathscr{A}_{κ} is derived from confluence as above using the irreflexivity of $<_{L}$ on \mathscr{A}.

We will check that \prec also linearly orders \mathscr{P}_{κ}. This may be proved by deriving (in the manner of Theorem 1.4(i)) a confluence result for \mathscr{P}_{κ} (if $p, q \in P_{\kappa}, p \equiv q$, then for some $r \in P_{\kappa}, p, q \rightarrow r$, where in the definition of \rightarrow, the rules $(a \circ b) \circ c \leftrightarrow a \circ(b \circ c)$, $(a \circ b) c \leftrightarrow a(b c), a(b \circ c) \rightarrow(a b \circ a c), a \circ b \rightarrow a b \circ a$ are allowed) and applying it together with Theorem 1.3. A shorter proof is to derive the result from the linearity of \prec on \mathscr{A}_{κ}.

Theorem 1.5. Given a linear ordering \prec on $\left\{x_{\alpha}: \alpha<\kappa\right\}$, extend it to a relation \prec on \mathscr{P}_{κ} as above. Then \prec linearly orders \mathscr{P}_{κ}, extends $<_{L}$, and if $p, q, r \in \mathscr{P}_{\kappa}$ with $q \prec r$, then $p q \prec p \circ q \prec p r$ (whence $p q=p r \Leftrightarrow q=r, p q \prec p r \Leftrightarrow q \prec r$).

Proof. Let \mathscr{A}_{k}^{\prime} be the free left distributive algebra with generators $\left\{x_{\chi}: \alpha<\kappa\right\} \cup\{x\}$, wherc x is a new variable, and let \prec on \mathscr{A}_{k}^{\prime} bc dcfined as above from the given ordering on $\left\{x_{\alpha}: \alpha<\kappa\right\}$ together with $x \prec x_{\alpha}($ all $\alpha)$.

Lemma 1. $v \prec w$ in $\mathscr{P}_{\kappa} \Leftrightarrow w x$ dominates $v x$ in a variable clash in \mathscr{A}_{k}^{\prime}.
Proof. Let $v=a_{0} \circ \cdots \circ a_{n}$ with each $a_{i} \in \mathscr{A}_{k}$.
(\Rightarrow) If $v<_{\mathrm{L}} w$, then $w=v v_{0} \cdots v_{n-1} * v_{n}$ for some $v_{0}, \ldots, v_{n} \in \mathscr{P}_{k}$, and, letting $x_{\alpha}=L\left(v_{0}\right), v x=a_{0}\left(a_{1}\left(\cdots a_{n} x\right)\right)$ and $a_{0}\left(a_{1}\left(\cdots\left(a_{n} x_{x}\right)\right)\right)<_{L} w x$, and if w dominates v in a variable clash, then $w x$ so dominates $v x$.
(\Leftrightarrow) Suppose for variables $z \prec r$ from $\left\{x_{\mathrm{x}}: \alpha<\kappa\right\} \cup\{x\}$ that $s=b_{0}\left(b_{1}\left(\cdots\left(b_{n} z\right)\right)\right) \leq_{\mathrm{L}} v x, t=b_{0}\left(b_{1}\left(\cdots\left(b_{n} r\right)\right)\right) \leq_{\mathrm{L}} w x$.

Then $b_{0} \circ b_{1} \circ \cdots \circ b_{n} \leq_{\mathrm{L}} v$; moreover, since $x \prec r, t \neq w x$ so $t \leq_{L} w$. Thus if $s \leq_{\mathrm{L}} v, s$ and t witness that $v \prec w$. The other case is where $s=v x$, whence $v=b_{0} \circ \cdots \circ b_{n}<_{\mathrm{L}} b_{0}\left(b_{1}\left(\cdots\left(b_{n} r\right)\right)\right)=t \leq_{\mathrm{L}} w$, giving $v \prec w$. \square

Lemma 2. If u, v, w in $\mathscr{P}_{\kappa}, u \prec v \prec w$, then $u \prec w$.
Proof. By Lemma 1 we have $\left\langle a_{0}\left(a_{1}\left(\cdots\left(a_{n} j\right)\right)\right), a_{0}\left(a_{1}\left(\cdots\left(a_{n} k\right)\right)\right)\right\rangle$ witnessing $u x \prec v x$, and $\left\langle b_{0}\left(b_{1}\left(\cdots\left(b_{m} \ell\right)\right)\right)\right.$, $\left.b_{0}\left(b_{1}\left(\cdots\left(b_{m} t\right)\right)\right)\right\rangle$ witnessing $v x \prec w x$. Since x does not occur in u or v, the a_{i} 's, b_{i} 's belong to \mathscr{A}_{κ}. To show $w x$ dominates $u x$ in a variable clash, write $\vec{a}=a_{0} \circ \cdots \circ a_{n}, \vec{b}=b_{0} \circ \cdots \circ b_{m}$. Since both $\vec{a} k, \vec{b} t \leq_{\mathrm{L}} v x$, by Theorem 1.4(ii) $\vec{a} k$ and $\vec{b} \ell$ are \leq_{L}-comparable.

Case 1: $\vec{a} k=\vec{b} \ell$. Then $\vec{a}=\vec{b}$ and $\langle\vec{a} j, \vec{a} t\rangle$ witnesses $u x \prec w x$.
Case 2: $\vec{a} k<_{\mathrm{L}} \vec{b} \ell$. Then $\vec{a} k \leq_{\mathrm{L}} \vec{b}$. Thus $\vec{a} k<_{\mathrm{L}} \vec{b} t \leq_{\mathrm{L}} w x$, so $\langle\vec{a} j, \vec{a} k\rangle$ witnesses $u x \prec w x$.

Case 3: $\vec{b} \ell<_{\mathrm{L}} \vec{a} k$. Then similarly $\vec{b} \ell \leq_{\mathrm{L}} \vec{a}<_{\mathrm{L}} \vec{a} j \leq_{\mathrm{L}} u x$, and $\langle\vec{b} \ell, \vec{b} t\rangle$ witnesses $u x \prec w x$.

Lemma 3. For $v, w \in \mathscr{P}_{\kappa}$ exactly one of $v \prec w, v=w, w \prec v$ holds.
Proof. By the linearity of \prec on $\mathscr{A}_{\kappa}^{\prime}$ either $v x=w x$ or, say, $v x \prec w x$. If $v x=w x$, then $v=w$. If $v x \prec w x$, then either $v x<_{\mathrm{L}} w x$ or $w x$ dominates $v x$ in a variable clash. Since $v x<_{\mathrm{L}} w x$ cannot hold-it implies $v x \leq_{\mathrm{L}} w$ hut x does not occur in w-assume $\langle\vec{a} k, \vec{a} f\rangle$ witnesses $v x \prec w x$. Since $\ell \neq x, \vec{a} \ell \leq_{\mathrm{L}} w$, so if $\vec{a} k \leq_{\mathrm{L}} v$, then $\langle\vec{a} k, \vec{a} \ell\rangle$ witnesses $v \prec w$. The other case is $\vec{a} k=v x$, whence $v=\vec{a}<_{\mathrm{L}} \vec{a} \ell \leq_{\mathrm{L}} w$, so $v<_{\mathrm{L}} w$.

Finally, \prec is irreflexive on \mathscr{P}_{κ} : for $p \in \mathscr{P}_{\kappa}, p \nprec p$ since $p x \nprec p x$ in $\mathscr{A}_{\kappa}^{\prime}$. Thus at most one of $v \prec w, v=w, w \prec v$ holds.

This proves the linearity of \prec, and the other statements in the theorem are immediate from that and the definition of the ordering.

The division form of $[21,22]$ is a way to determine, for $u, v \in \mathscr{P}$, which of $u<\mathrm{L}$ $v, u=v, v<_{\mathrm{L}} u$ holds, by a type of lexicographic comparison. The remarks about it (from here through the end of this section) are included for completeness and for comparison with the next section, which is a self-contained version of division forms for the case of \mathscr{P}_{ω}.

Define, for $p \in \mathscr{P}$, a p-normal term to be a product expressed in the form $p_{0} p_{1} \cdots$ $p_{n-1} * p_{n}$, where $p_{0}=p, p_{i+2} \leq_{\llcorner } p_{0} p_{1} \cdots p_{i}$ for all i, and if $*=0$ and $n \geq 2$ then $p_{n}<{ }_{\mathrm{L}} \quad p_{0} p_{1} \cdots p_{n-2}$.

Theorem 1.6 (Laver $[21,22]$). (i) For all $p, u \in \mathscr{P}$, if $p \leq_{\mathrm{L}} u$ then u is representable uniquely as a p-normal term $p_{0} \cdots p_{n-1} * p_{n}$.
(ii) Moreover, let (T, ℓ) be the rooted, \mathscr{P}-labeled tree such that ℓ (root of $T)=u$, such that $\ell(t) \leq_{\mathrm{L}} p$ implies t is a maximal node of T, and such that $p<_{\mathrm{L}} \ell(t)$ implies, letting $p_{0} \cdots p_{n-1} * p_{n}$ be the p-normal term equalling $\ell(t), t$'s immediate successors are t_{0}, \ldots, t_{n} with $\ell\left(t_{i}\right)=p_{i}$. Then T is finite.

The uniqueness part relies on irreflexivity. The term for u given by part (ii) (in a language with a symbol for each $q \leq_{\mathrm{L}} p$) is called the p-division form of u.

For $p, q \in \mathscr{P}$ define the (nonnegative) iterates $I_{n}(p, q)$ of $\langle p, q\rangle$ by $I_{0}(p, q)=$ $q, I_{1}(p, q)=p, I_{k+2}(p, q)=I_{k+1}(p, q) I_{k}(p, q)$. Writing $I_{n}(p, q)=I_{n}$, then $I_{n+1} \circ I_{n}=$ $p \circ q$ by iterating the law $a \circ b=a b \circ a$.

If $p, u \in \mathscr{P}$, define the p-associated sequence $S_{p}(u)=S(u)$ of u as follows. If $u \leq_{\mathrm{L}} p, S(u)=\langle u\rangle$. If the p-normal product equalling u is $u_{0} u_{1}, \ldots u_{n}$ (so $u_{0}=p$), then $S(u)=\left\langle u_{0}, u_{1}, \ldots, u_{n}\right\rangle$. If the p-normal product for u is $u_{0} u_{1} \cdots u_{n-1} \circ u_{n}$, then $S(u)$ is the infinite sequence $\left\langle u_{0}, u_{1}, \ldots, u_{i}, \ldots\right\rangle$, where for $i>n, u_{i}=u_{0} u_{1} \cdots u_{i-2}$. That is, for $i \geq n, u_{i}=I_{i-n}\left(u_{0} u_{1} \cdots u_{n-1}, u_{n}\right)$.

Theorem 1.7 (Laver [21, 22]). For $p, u, v \in \mathscr{P}, u<_{\mathrm{L}} v$ if and only if $S_{p}(u)$ is lexicographically less than $S_{p}(v)$.
ptThat is, $S_{p}(u)$ is a proper initial segment of $S_{p}(v)$, or $S_{p}(u)$ and $S_{p}(v)$ differ at some first coordinate i and $u_{i}<_{\mathrm{L}} v_{i}$. To derive that $<_{\mathrm{L}}$ lincarly orders \mathscr{P}, let p be the generator x_{0} of \mathscr{P}. For $u, v \in \mathscr{P}$, whether or not $u<_{\mathrm{L}} v$ is decided by comparing $S(u)$ and $S(v)$, and then if $S(u)$ and $S(v)$ first differ at coordinates u_{i}, v_{i}, comparing $S\left(u_{i}\right)$ and $S\left(v_{i}\right)$, etc. One can check that this procedure ends in a finite number of steps.

If $u=p_{0} p_{1} \cdots p_{n-1} * p_{n}$ is a p_{0}-normal term, then it is seen that for each $i<n$, p_{i+1} is the $<_{\mathrm{L}}$ greatest member q of \mathscr{P} with $p_{0} \cdots p_{i} q \leq_{\mathrm{L}} u$ (see e.g. Lemma 2.1(i) below). Theorem 1.6(i) thus implies that a type of division algorithm for \mathscr{P} terminates in a finite number of steps. Namely, if $u<_{\mathrm{L}} v$ let u_{0} be greatest with $u u_{0} \leq_{\mathrm{L}} v$, and if $u u_{0}, u \circ u_{0} \neq v$ let u_{1} be greatest with $u u_{0} u_{1} \leq_{\mathbf{L}} v$, etc. Then for some $n, v=u u_{0} u_{1} \cdots u_{n}$ or $v=u u_{0} u_{1} \cdots u_{n-1} \circ u_{n}$.
2.

From here on, \prec is the linear ordering on \mathscr{P}_{10} induced by the ordering $x_{0} \succ x_{1} \succ$ $x_{2} \succ \cdots \succ x_{n} \succ \cdots$, as in Theorem 1.5.

For $p \in \mathscr{P}_{\omega}$, a p-normal term in \mathscr{P}_{ω} is a term of the form $p_{0} p_{1} \cdots p_{n-1} * p_{n}$, where

$$
\begin{aligned}
& p_{0}=p, p_{i+2} \preceq p_{0} p_{1} \cdots p_{i} \text { for all } i \leq n-2 \text {, and } \\
& \text { if } *=\circ \text { and } n \geq 2, p_{n} \prec p_{0} p_{1} \cdots p_{n-2}
\end{aligned}
$$

A normal term is an x_{i}-normal term for x_{i} a generator. We will blur the distinction, when no confusion should arise, between such terms and the members of \mathscr{P}_{0} they represent.

For a p_{0}-normal term $p_{0} p_{1} \cdots p_{n-1} * p_{n}$, define its associated sequence $S\left(p_{0} p_{1} \cdots\right.$ $p_{n-1} * p_{n}$) to be $\left\langle p_{0}, p_{1}, \ldots, p_{n}\right\rangle$ if $*=\cdot$, and if $*=0$, to be the infinite sequence $\left\langle p_{0}, p_{1}, \ldots, p_{i}, \ldots\right\rangle$ where for all $i>n, p_{i}=p_{0} p_{1} \cdots p_{i-2}$. If $\left\langle p_{0}, p_{1}, \ldots, p_{i}\right\rangle$ is an initial segment of $S\left(p_{0} \cdots p_{n-1} * p_{n}\right)$, then $p_{0} p_{1} \cdots p_{i} \preceq p_{0} p_{1} \cdots p_{n-1} * p_{n}$; in the case $*=0$ and $i \geq n$ this follows from $i+1-n$ applications of the $a \circ b$ $=a b \circ a$ law.

We have that for any initial segment $\left\langle p_{0}, \ldots, p_{i}\right\rangle$ of an associated sequence, $p_{0} \cdots p_{i}$ is a p_{0}-normal term. Note that for $p_{0} \in \mathscr{P}$, distinct p_{0}-normal terms cannot have the same associated sequence: if the sequence is finite, this is immediate, and if it is infinite, say $\left\langle p_{0}, p_{1}, \ldots, p_{i} \cdots\right\rangle$, then it equals $S\left(p_{0} p_{1} \cdots p_{n-1} \circ p_{n}\right)$ where either $n=1$ or there is an i with $p_{i} \prec p_{0} p_{1} \cdots p_{i-2}$ and n is the greatest such i.

If $p_{0} \cdots p_{n-1} * p_{n}, q_{0} \cdots q_{m-1} * q_{m}$ are p_{0}-normal terms (so $p_{0}=q_{0}$) define $p_{0} \cdots p_{n-1} * p_{n}<_{\text {Lex }} q_{0} \cdots q_{m-1} * q_{m}$ if either $S\left(p_{0} \cdots p_{n-1} * p_{n}\right)$ is a proper initial segment of $S\left(q_{0} \cdots q_{m-1} * q_{m}\right)$ or there is an i with p_{i}, q_{i} coordinates of $S\left(p_{0} \cdots p_{n-1} * p_{n}\right)$, $S\left(q_{0} \cdots q_{m-1} * q_{m}\right)$, respectively, such that $p_{j}=q_{j}(j<i)$ and $p_{i} \prec q_{i}$.

Lemma 2.1. (i) If $p=p_{0} \cdots p_{n-1} * p_{n}$ is a p_{0}-normal term, $0<j \leq n$, and $p_{j} \prec q_{j}$, then $p \prec p_{0} \cdots p_{j-1} q_{j}$.
(ii) If $p=p_{0} \cdots p_{n-1} * p_{n}$ and $q=q_{0} \cdots q_{m-1} * q_{m}$ are p_{0}-normal terms (so $p_{0}=q_{0}$), then

$$
p \prec q \Leftrightarrow S(p)<\operatorname{Lex} S(q) .
$$

Proof. (i) Let $S(p)=\left\langle p_{0}, p_{1}, \ldots\right\rangle$, finite or infinite. Write $p_{i}=q_{i}(i<j)$. We are done if for some $r, p_{0} \cdots p_{r}$ is dominated by $q_{0} \cdots q_{j}$ in a variable clash, so assume that it does not happen. Then in particular $p_{j}<_{\mathrm{L}} q_{j}$. We claim that

$$
\text { for all } i \geq j, \quad p_{0} \cdots p_{i-1} \circ p_{i}<_{\mathrm{L}} q_{0} q_{1} \cdots q_{j}
$$

For the case $i=j$ use $p_{j}<_{\mathrm{L}} q_{j}$ and $p_{0} \cdots p_{j-1}=q_{0} \cdots q_{j-1}$. Suppose $i \geq j$ and the claim is true for i. Then $q_{0} \cdots q_{j}=\left(p_{0} \cdots p_{i-1} \circ p_{i}\right) r_{0} \cdots r_{t-1} * r_{t} \geq_{\mathrm{L}}\left(p_{0} \cdots p_{i-1} \circ\right.$ $\left.p_{i}\right) r_{0}=p_{0} \cdots p_{i-1}\left(p_{i} r_{0}\right)-p_{0} \cdots p_{i}\left(p_{0} \cdots p_{i-1} r_{0}\right)$. We have $p_{i+1} \preceq p_{0} \cdots p_{i-1}$.

Case 1: p_{i+1} dominated by $p_{0} \cdots p_{i-1}$ in a variable clash. Then, as we are assuming cannot happen, $p_{0} \cdots p_{i} p_{i+1}$ is dominated by $p_{0} \cdots p_{i}\left(p_{0} \cdots p_{i-1}\right)$, whence by $q_{0} \cdots q_{j}$, in a variable clash.

Case 2: $p_{i+1}=p_{0} \cdots p_{i-1}$. Then $q_{0} \cdots q_{j} \geq_{\mathrm{L}} p_{0} \cdots p_{i}\left(p_{0} \cdots p_{i-1} r_{0}\right)=\left(p_{0} \cdots p_{i} \circ\right.$ $\left.p_{i+1}\right) r_{0}>_{\mathrm{L}} p_{0} \cdots p_{i} \circ p_{t+1}$.

Case 3: $p_{i+1}<_{\mathrm{L}} p_{0} \cdots p_{i-1}$. Then $q_{0} \cdots q_{j}>_{\mathrm{L}} p_{0} \cdots p_{i}\left(p_{i+1} s\right)$ (for some s) $>_{\mathrm{L}}$ $p_{0} \cdots p_{i} \circ p_{i+1}$.

The claim suffices for part (i) of the lemma, as there is an $i \geq j$ such that $p=$ $p_{0} \cdots p_{i-1} * p_{i}<_{L} q_{0} \cdots q_{j}$.
(ii) (\Leftarrow) Let $S(p)=\left\langle p_{0}, p_{1}, \ldots\right\rangle, S(q)=\left\langle q_{0}, q_{1}, \ldots\right\rangle$, with $p_{0}=q_{0}$. If $S(p)$ is a proper initial segment of $S(q)$, then $S(p)=\left\langle p_{0}, p_{1}, \ldots, p_{f}\right\rangle, S(q)=\left\langle p_{0}, p_{1}, \ldots, p_{\gamma}\right.$, $\left.q_{f+1} \cdots\right)$ and $p=p_{0} \cdots p_{\ell}<_{\mathrm{L}} p_{0} \cdots p_{f} q_{\ell+1} \leq_{\mathrm{L}} q$. So assume for some least j with $0<j \leq n$ that $p_{j} \prec q_{j}$. Then we are done by part (i).
(\Rightarrow) Since different normal terms p and q have different associated sequences, $S(p)=S(q)$ implies $p=q$. So we are done by the (\Leftrightarrow) direction and linearity of \prec.

Call a p_{0}-normal term $p_{0} \cdots p_{n-1} * p_{n}$ normal if p_{0} is an x_{i}.
In the language of and \circ with a constant symbol for each x_{i}, define the notion of a division-form term (with respect to \prec) inductively as follows: For $n \geq 0$, $p_{0} p_{1} \cdots p_{n-1} * p_{n}$ is a division form term iff p_{0} is an $x_{i}, p_{1}, \ldots, p_{n}$ are division form terms, and $p_{0} p_{1} \cdots p_{n-1} * p_{n}$ is normal. Let $D F=\left\{p \in \mathscr{P}_{(1)}: p\right.$ has a representation as a division form term\}. By Lemma 2.1 the representation is unique. If $p, q \in D F$, then by Lemma 2.1 the question whether $p \prec q, p=q$ or $q \prec p$ is determined by a lexicographic comparison of the division form terms representing p and q.

We define the notion of "decreasing division form" mentioned in the introduction. $D D F$ consists of those members p of $D F$ such that every component $a b$ or $a \circ b$ of the $D F$ term representing p satisfies $b \prec a$. Equivalently, call a normal term $p_{0} \cdots p_{n-1} * p_{n}$ decreasing normal if, in the definition of normal, additionally $p_{1} \prec p_{0}$, and define a $D D F$ term as in the preceding paragraph, replacing "normal" by "decreasing normal". So a $D D F$ term is either an x_{i} or a term of the form $p_{0} p_{1} \cdots p_{n-1} * p_{n}$ for some $n>0$, where p_{0} is an $x_{i}, p_{1} \prec p_{0}, p_{i+2} \preceq p_{0} \cdots p_{i}, p_{n} \prec p_{0} \cdots p_{n-2}$ if $n \geq 2$ and $*=0$, and each p_{i} is a $D D F$ term. Then $D D F=\left\{p \in \mathscr{P}_{\omega}: p\right.$ has a representation as a decreasing division form term\}.

Similarly define $p-D F$ and $p-D D F$ for $p \in \mathscr{P}_{(1)}$ as follows. We want the $p-D F$, $p-D D F$ terms r to have first coordinate p if $p \leq_{\mathrm{L}} r$; otherwise the first coordinate will be an x_{i}. So define, for $q \in \mathscr{P}_{\omega}$, a normal term for q with respect to p to be either a p-normal term $q=p p_{1} \cdots p_{n-1} * p_{n}$, or a normal term $q=x_{i} u_{1} \cdots u_{m-1} * u_{m}$ where $p \mathbb{Z}_{\mathrm{L}} q$. Then the notion of a p-division form ($p-D F$) term, in the language with constant symbols for the variables and a constant symbol for p, is obtained hereditarily from the notion of a normal term for q with respect to p, in the same way that the notion of a $D F$-term is obtained from the notion of a normal term. Let $p-D F=\{q: q$ has a representation as a $p-D F$ term $\}$. Similarly define a decreasing normal term for q with respect to p, a p-decreasing division form ($p-D D F$) term, and $p-D D F$. Then if p is an $x_{n}, p-D F=D F, p-D D F=D D F$.

So there are two types of sequences used in building up $p-D F$ terms. The next lemma expresses how to lexicographically compare two such terms $u=u_{0} u_{1} \cdots u_{n-1} * u_{n}$ and $v=v_{0} v_{1} \cdots v_{m-1} * v_{m}$ to determine whether $u \prec v$.

Lemma 2.2. (i) If $u_{0}=v_{0}$, then $u \prec v$ is determined as in Lemma 2.1.
(ii) If $u_{0}=x_{n}, v_{0}=x_{m}(n \neq m)$, then $u \prec v$ if and only if $n>m$.
(iii) If $u_{0}=x_{n}, v_{0}=p$, and $x_{n} \neq p$ (whence $u \not 又_{\mathrm{L}} p$), then $u \prec v$ if and only if $u \prec p$.

Proof. (i) and (ii) are immediate. For (iii), if $u \prec p$, then since $u \not{ }_{\chi} p p, p$ dominates u in a variable clash, thus v dominates u in a variable clash, so $u \prec v$.

For $p \in \mathscr{P}_{\omega}$, define $\operatorname{Var}(p)=\left\{x_{n}: x_{n}\right.$ occurs in $\left.p\right\}$.
Lemma 2.3. (i) If $p \in D D F, L(p)=x_{n}$, then $\operatorname{Var}(p) \subset\left\{x_{m}: m \geq n\right\}$.
(ii) If $p \in D D F, x_{m} \succ p$, then $\operatorname{Var}(p) \subset\left\{x_{k}: k>m\right\}$.
(iii) If $q \in p-D D F$, then every proper subterm of the p-DDF term representing q is $\prec q$.

Proof. We have that (i) implies (ii), since for $L(p)=x_{n}$ we must have $n>m$.
(i) is proved by induction on $D D F$ terms; suppose (i) is true for all subterms of $p=p_{0} p_{1} \cdots p_{i-1} * p_{i}$, where $p_{0}=x_{n}$. Since $x_{n} \succ p_{1}, x_{n} \succ L\left(p_{1}\right)$, and since for $i \geq 2, p_{i} \preceq p_{0} \cdots p_{i-2}, L\left(p_{i}\right) \preceq x_{n}$; done by induction.

For (iii) (by induction on $p-D D F$ terms) if $n>0$ and $q=p_{0} p_{1} \cdots p_{n-1} * p_{n}$, then $p_{0} p_{1} \cdots p_{n-1} \prec q$, and if $n=1$, then $p_{n} \prec p_{0} \prec q$, and if $n>1$, then $p_{n} \preceq p_{0} \cdots p_{n-2} \prec q$.

Theorem 2.4. Suppose $a, b \in\left\{x_{n}: n<\omega\right\}$, $a \succ b$. Then if $p \in D D F$, then $p \in$ $(a \circ b)-D D F$.

Proof. The method is similar to those in [21, 22]. Let $|q|$ (respectively $|q|^{a \circ b}$) bc the $D D F$-term (respectively, the $a \circ b-D D F$ term) representing q, if one exists. Recall that an $a \circ b-D D F$ term $p_{0} p_{1} \cdots p_{i-1} * p_{i}$ is either a decreasing ($a \circ b$)-normal term (so $p_{0}=(a \circ b)$) or a decreasing normal term (so p_{0} is an x_{j}), where in the latter case, $x_{j} p_{1} \cdots p_{i-1} * p_{i} \not \chi_{\mathrm{L}} a \circ b$. Technically speaking, $a \circ b$ is either a normal- $D D F$ term of length 2 or an $(a \circ b)$-DDF term of length 1 ; no problems will arise by identifying these two terms.

If $p=p_{0} \cdots p_{n}$ and q are $(a \circ b)$-DDF terms define $q \ll p$ if either $n=0$ and $q \prec p_{0}$, or $n>0$ and $q \preceq p_{0} \cdots p_{n-1}$.

Lemma 1. If p, q are $(a \circ b)-D D F$ terms, then $q \ll p$ iff the term $p q$ is an $(a \circ b)-D D F$ term. Moreover, $q \ll p$ implies $p q \gg p$ and $|p \circ q|^{a \circ b}$ exists.

Proof. If p is the $(a \circ b)$-normal term $(a \circ b) p_{1} \cdots p_{n-1} p_{n}$, then clearly $|p q|^{a \circ b}=$ $p q \gg p$. Writing $q=p_{n+1}$, we have that $|(p \circ q)|^{a \circ b}=(a \circ b) p_{1} \cdots p_{i-1} \circ p_{i}$, where $i \leq n+1$ is greatest such that $p_{i} \prec(a \circ b) p_{1} \cdots p_{i-2}(i=1$ if no i satisfies that condition).

If $p=x_{k} q_{1} \cdots q_{n}$ the same statements obtain, where it is checked that in exactly the case $x_{k}=q_{0}=a, q_{1}=b, q_{i}=q_{0} \cdots q_{i-2}$ for $2 \leq i \leq n+1, q_{n+1}=q$, that $|p \circ q|^{a \circ b}=a \circ b$; otherwise $|p \circ q|^{a \circ b} \not \searrow_{\mathrm{L}} a \circ b$. This proves the lemma.

Definition. For $p, q \in(a \circ b)$ - $D D F$ define a relation $p \sqsupset q$, by induction first on the $(a \circ b)$ - $D D F$ term for p, then on the $(a \circ b)$-DDF term for q ($p \sqsupset q$ will guarantee that $|p q|^{a \circ b}$ and $|p \circ q|^{a \circ b}$ cxist).
(a) If $p=a \circ b$ or p is an x_{i}, then $p \sqsupset q$ if and only if $p \succ q$.
(b) If $p=p_{0} p_{1} \cdots p_{n}$ for $n>0$, then $p \sqsupset q$ if and only if either $q \ll p$, or $q=$ $p_{0} \cdots p_{n-1} r_{n} \cdots r_{k-1} * r_{k}($ possibly $k=n)$, where $p_{n} \sqsupset r_{n}$ and $p_{n} \circ r_{n} \ll p_{0} \cdots p_{n-1}$.
(c) If $p=p_{0} p_{1} \cdots p_{n-1} \circ p_{n}$, then $p \sqsupset q$ if and only if $p_{n} \sqsupset q$ and $p_{n} \circ q \ll$ $p_{0} \cdots p_{n-1}$.

Lemma 2. For $p, q, s \in(a \circ b)$ - $D D F$
(i) $q \ll p$ implies $p \sqsupset q$.
(ii) $p \sqsupset q$ implies $p \succ q$.
(iii) $p \sqsupset q \succeq s$ implies $p \sqsupset s$.

Proof. (i) is by definition. (ii) and (iii) are proved by induction on p. For (ii), in the second clause of part (b) of the definition of $p \sqsupset q, p_{n} \succ r_{n}$ holds by induction. And in part (c) of the definition $p_{n} \succ q$ holds by induction and $p \succ p_{n}$ holds by Lemma 2.3(iii). And for (iii), in the second part of clause (b), if $s=p_{0} \cdots p_{n-1} s_{n} s_{n+1} \cdots s_{t-1}$ * s_{t} with $s_{n} \prec r_{n}$, then by induction $p_{n} \sqsupset s_{n}$, and $p_{n} \circ s_{n} \prec p_{n} \circ r_{n} \ll p_{0} \cdots p_{n-1}$.

Lemma 3. If $p, q \in(a \circ b)-D D F, p \sqsupset q$, then $|p q|^{a \circ b},|p \circ q|^{a \circ b}$ exist and $p q \sqsupset p$.
Proof. (By induction first on p, then on q)
Case 1: $p=(a \circ b)$ or p is an x_{k}. This is by definition, as in Lemma 1.
Case 2: $p=u_{0} \cdots u_{n}$. Then if $q \ll p$, we are done as in Lemma 1. So assume $q=u_{0} \cdots u_{n-1} v_{n} \cdots v_{k-1} * v_{k}$, as in part (ii) of the definition of \sqsupset. Suppose $k>n$. Since $u_{n} \sqsupset v_{n}$, by the induction hypothesis on $p,\left|u_{n} \circ v_{n}\right|^{a \circ b}$ exists, and for each v_{i}, $v_{i} \prec q$ by Lemma 2.3(iii), so $p \sqsupset v_{i}$ by Lemma 2, so $\left|p v_{i}\right|^{a \circ b}$ cxists by the induction hypothesis on q. Thus

$$
|p q|^{a \circ b}=u_{0} \cdots u_{n-1}\left|u_{n} \circ v_{n}\right|^{a \circ b} v_{n+1}\left|p v_{n+2}\right|^{a \circ b} \cdots\left|p v_{k-1}\right|^{a \circ b} *\left|p v_{k}\right|^{a \circ b}
$$

with, in the case $*=0, p v_{k} \prec p\left(u_{0} u_{1} \cdots v_{n} \cdots v_{k-2}\right)=u_{0} u_{1} \cdots u_{k-1}\left(u_{n} \circ v_{n}\right) v_{n+1}\left(p v_{n+2}\right)$ $\cdots\left(p v_{k-2}\right)$ by the second part of Theorem 1.5. If $*=\cdot,|p q|^{a \circ b} \sqsupset p$ is clear. If $*=\circ$, we have $p v_{k} \sqsupset p$ by the induction hypothesis on p and $p v_{k} \circ p=p \circ v_{k} \mathbb{K}$ $u_{0} \cdots u_{n-1}\left(u_{n} \circ v_{n}\right) v_{n+1}\left(p v_{n+2}\right) \cdots\left(p v_{k-1}\right)$, by the last clause of Theorem 1.5. Finally when $*=0,|p \circ q|^{a \circ b}=|p q \circ p|^{a \circ b}=u_{0} u_{1} \cdots u_{n-1}\left|u_{n} \circ v_{n}\right|^{a \circ b} \cdots\left|p v_{k-1}\right|^{a \circ b} \circ\left|p \circ v_{k}\right|^{a \circ b}$, and if $*=\cdot, p \prec u_{0} \cdots u_{n-1}\left(u_{n} \circ v_{n}\right) \cdots\left(p v_{k-1}\right)$, so $|p \circ q|^{a \circ b}=|p q|^{a \circ b} \circ p$. The case $k=n$ is similarly checked.

Case 3: $p=u_{0} \cdots u_{k-1} \circ u_{k}$. Then $\left|u_{k} q\right|^{a \circ b}$ and $\left|u_{k} \circ q\right|^{a \circ b}$ exist by induction, $u_{k} \circ q \ll$ $u_{0} \cdots u_{k-1}$, so $|p q|^{a \circ b}=u_{0} \cdots u_{k-1}\left|u_{k} q\right|^{a \circ b}$. For $|p q|^{a \circ b} \sqsupset p$ we have $\left|u_{k} q\right|^{a \circ b} \sqsupset$ u_{k} by induction and $u_{k} q \circ u_{k}=u_{k} \circ q \ll u_{0} \cdots u_{k-1}$, as desired, and $|p \circ q|^{a \circ b}=$ $u_{0} \cdots u_{k-1} \circ\left|u_{k} \circ q\right|^{a \circ b}$, with similar verifications.

Lemma 4. Suppose $u \in D D F$ and $a \succ u$. Then $|a u|^{a \circ b}$ exists and $|a u|^{a 0 b} \sqsupset a$.
Proof. (By induction on u). If u^{\prime} is a component of u, then $u \succ u^{\prime}$ by Lemma 2.3(iii), so $a \succ u^{\prime}$ and the lemma is true for a and u^{\prime}. We check the main case $u=$ $b \ell_{0} \cdots \ell_{t-1} \circ \ell_{t}$. Then $|a u|^{a \circ b}=(a \circ b) \ell_{0}\left|a \ell_{1}\right|^{a \circ b} \cdots\left|a \ell_{t-1}\right|^{a \circ b} \circ\left|a \ell_{t}\right|^{a \circ b}$, an $(a \circ b)$-normal term, each $\left|a \ell_{i}\right|^{a \circ b}$ existing by induction. To see $|a u|^{a o b} \sqsupset a$, we have $\left|a \ell_{t}\right|^{a \circ b} \sqsupset a$ by induction and $a \ell_{t} \circ a=a \circ \ell_{t} \preceq a\left(b \ell_{0} \cdots \ell_{t-1}\right)=(a \circ b) \ell_{0}\left(a \ell_{1}\right) \cdots\left(a \ell_{t-2}\right)$, as desired.

For the theorem, we show by induction on $D D F$-terms p that $|p|^{a \circ h}$ exists. If $L(p) \neq a$, i.e., $p=x_{n} u_{0} \cdots u_{m-1} * u_{m}$ with $x_{n} \neq a$, then by induction $|p|^{a \circ b}=$ $x_{n}\left|u_{0}\right|^{a \circ b} \cdots\left|u_{m-1}\right|^{a \circ b} *\left|u_{m}\right|^{\alpha \circ b}$. Similarly if $p=a u_{0} \cdots u_{m-1} * u_{m}$ but u_{0} is not of the form $b v_{0} \cdots v_{k-1} * v_{k}$ for some $k \geq 0$, we are done by induction. And $\mid a\left(b v_{0} \cdots v_{k}\right) c_{0}$ $\left.\cdots c_{r-1} * c_{r}\right|^{a \circ b}=(a \circ b)\left|v_{0}\right|^{a \circ b}\left|a v_{1}\right|^{a \circ b} \cdots\left|a v_{k}\right|^{a \circ b}\left|c_{0}\right|^{a \circ b} \cdots\left|c_{r-1}\right|^{a \circ b} *\left|c_{r}\right|^{a \circ b}$. So we are left with the cases where p has one of the forms $a *(b \circ u), a(b \circ u) c_{0} \cdots c_{k-1} * c_{k}$, $a *\left(b u_{0} \cdots u_{n-1} \circ u_{n}\right), a\left(b u_{0} \cdots u_{n-1} \circ u_{n}\right) c_{0} \cdots c_{k-1} * c_{k}$. We look at the cases requiring the lemmas and leave the others to the reader.

For $p=a(b \circ u) c_{0} \cdots c_{k-1} * c_{k}$, we have $|a(b \circ u)|^{a \circ b}=(a \circ b)|u|^{a \circ b} \circ a b$. We claim $\left((a \circ b)|u|^{a \circ b} \circ a b\right) \sqsupset c_{0}$. Since $c_{0} \preceq a$ it suffices by Lemma 2(ii) to show $\left((a \circ b)|u|^{a \circ b} \circ a b\right) \sqsupset a$. We have $a b \sqsupset a$ and $a b \circ a=a \circ b \ll(a \circ b)|u|^{a \circ b}$, as desired. Thus $|a(b \circ u)|^{a \circ b} \sqsupset c_{0}$ so by Lemma $3\left|a(b \circ u) c_{0}\right|^{a \circ b}$ exists and is $\sqsupset a(b \circ u) \succeq c_{1}$. Itcrating Lemmá 2(ii) and Lemma $3 k$ times in this manner yields that $|p|^{\mid a n b}$ exists.

For $p=a\left(b u_{0} \cdots u_{n-1} \circ u_{n}\right) c_{0} \cdots c_{k-1} * c_{k}$, we have $r=a\left(b u_{0} \cdots u_{n-1} \circ u_{n}\right)=$ $(a \circ b) u_{0}\left(a u_{1}\right) \cdots\left(a u_{n-1}\right) \circ\left(a u_{n}\right)$ and claim that $|r|^{a \circ b} \sqsupset c_{0}$. By Lemma 3, $\left|a u_{n}\right|^{a \circ b} \sqsupset$ $a \succeq c_{0}$, so $\left|a u_{n}\right|^{a \circ b} \sqsupset c_{0}$ and $a u_{n} \circ c_{0} \preceq a u_{n} \circ a=a \circ u_{n} \preceq a\left(b u_{0} \cdots u_{n-2}\right)=$ $(a \circ b) u_{0}\left(a u_{1}\right) \cdots\left(a u_{n-2}\right)$. This proves the claim and finishes the theorem by iterating Lemmas 2(ii) and 3 as in the previous case.

For $i=1,2, \ldots, \sigma_{i}$ the i th generator of B_{∞}, define

$$
\begin{aligned}
\left(x_{i-1}\right)^{\sigma_{i}} & =x_{i-1} x_{i}, \quad\left(x_{i}\right)^{\sigma_{i}}=x_{i-1} \\
\left(x_{k}\right)^{\sigma_{i}} & =x_{k} \quad(k \neq i-1, i) .
\end{aligned}
$$

Then because the x_{i} 's are free generators of \mathscr{P}_{ω}, this map extends to a map $u \rightarrow u^{\sigma_{i}}$ from \mathscr{P}_{ω} to $\mathscr{P}_{()}$.

Theorem 2.5. For $p, q \in D D F, i=1,2, \ldots$
(i) $p \prec q \Leftrightarrow p^{\sigma_{i}} \prec q^{\sigma_{i}}$.
(ii) $p \preceq p^{\sigma_{i}}$.

Proof. Let $a=x_{i-1}, b=x_{i}$, so $(a \circ b)^{\sigma_{i}}=a \circ b$. By Theorem 2.4, it suffices to prove (i) and (ii) for all $p, q \in(a \circ b)-D D F$.

For (i) we show by induction on $p \in(a \circ b)$-DDF that for all $q \in(a \circ b)-D D F$, $p \prec q \Rightarrow p^{\sigma_{i}} \prec q^{\sigma_{i}}$ (the (\Leftarrow) direction then follows by linearity of \prec).

Let p be $p_{0} p_{1} \cdots p_{n-1} * p_{n}$ in $(a \circ b)-D D F$, where p_{0} is either $a \circ b$, some generator e different from a and b, b, or a, and $p^{\sigma_{i}}=p_{0}^{\sigma_{i}} p_{1}^{\sigma_{i}} \cdots p_{n-1}^{\sigma_{i}} * p_{n}^{\sigma_{i}}$ is a $p_{0}^{\sigma_{i}}$-decreasing normal sequence by the induction hypothesis.

Now suppose $p \prec q_{0} \cdots q_{k-1} * q_{k}$, the $a \circ b-D D F$ term for q; to show $p^{\sigma_{i}} \prec q^{\sigma_{j}}$. If $p_{0}=q_{0}$, let $j \leq n$ be least such that $p_{j} \prec$ the j th member q_{i} of q 's associated sequence. Then $p_{f}^{\sigma_{i}}=q_{f}^{\sigma_{i}}, \ell<j$, and $p_{j}^{\sigma_{i}} \prec q_{j}^{\sigma_{i}}$ by induction, so by Lemma 2.1(i) $p^{\sigma_{i}} \prec q^{\sigma_{i}}$.

So assume $p_{0} \neq q_{0}$. We check the cases $p_{0}=b$ and q_{0} is a or $a \circ b, p_{0}=a$ and $q_{0}=a \circ b$; the other cases are either impossible or are cases where $p^{\sigma_{i}}$ is dominated by $q^{\sigma_{i}}$ in a variable clash. In the $p_{0}=b$ case (with $n \geq 1$), $p_{1} \prec p_{0}$ so $L\left(p_{1}\right)$ is a generator $c \prec b$, and we are done by a variable clash here as well.

We claim that if $p_{0}=a$, then $p \prec p^{\sigma_{i}} \prec a \circ b$, which will prove the last case $p_{0}=a, q_{0}=a \circ b$. Note that $p_{1} \preceq b$ lest $a \circ b<_{\mathrm{L}} p$. Thus $p^{\sigma_{t}}=a b p_{1}^{\sigma_{i}} \cdots p_{n-1}^{\sigma_{i}} * p_{n}^{\sigma_{t}}$ is, by that fact and the induction hypothesis, an a-decreasing normal term (i.e., of length $n+2$). Since $p_{0}=a$ the condition $n=1, p_{1}=b$ and $*=0$ is disallowed, whence Lemma $2.1(\mathrm{i})$ gives $p^{\sigma_{i}} \prec a \circ b$. To show $p \prec p^{\sigma_{i}}$, we have $L\left(p_{1}\right) \preceq b$. If $L\left(p_{1}\right) \prec b$, then we are done by a variable clash. If $L\left(p_{1}\right)=b$, then $p_{1}=b$ (otherwise $p_{1}=b s_{0} \cdots s_{n-1} * s_{n}$ and $a \circ b \leq_{\mathrm{L}} p$). Then

$$
\begin{gathered}
p=a b p_{2} p_{3} \cdots p_{n-1} * p_{n}, \\
p^{\sigma_{i}}=a b a p_{2}^{\sigma_{i}} p_{3}^{\sigma_{i}} \cdots p_{n-1}^{\sigma_{i}} * p_{n}^{\sigma_{i}},
\end{gathered}
$$

Let $v_{0}=a, v_{1}=b, v_{j+2}=v_{0} v_{1} \cdots v_{j}$, so for $j>1, v_{j}=I_{j-1}(a, b)$. Then by induction on $j,\left(v_{0} \cdots v_{j}\right)^{\sigma_{i}}=v_{0} \cdots v_{j+1}$. If for every $j \leq n, p_{j}=v_{j}$, then $* \neq \circ$ (lest $p=a \circ b$), so $p=v_{0} \cdots v_{n} \prec v_{0} \cdots v_{n} v_{n+1}=p^{\sigma_{l}}$. Finally, if for some least $j, p_{j} \prec v_{j}$ (note $j \geq 2$), then $p^{\sigma_{i}} \geq_{\mathrm{L}}\left(p_{0} \cdots p_{j-1}\right)^{\sigma_{i}}=\left(v_{0} \cdots v_{j-1}\right)^{\sigma_{i}}=v_{0} \cdots v_{j-1} v_{j}$, which is $\succ p$ by Lemma 2.1(i). This proves (i).

For (ii), we prove $p \preceq p^{\sigma_{i}}$ by induction on $p \in(a \circ b)$ - $D D F$. Writing p as in part (i), if $p_{0}-a \circ b$ or p_{0} is a generator different from a and $b, p \preceq p^{\sigma_{i}}$ by the induction hypothesis and Lemma $2.1(\mathrm{i})$. If $p_{0}=b$, then $p^{\sigma_{i}}$ dominates p in a variable clash, and for the case $p_{0}=a, p \prec p^{\sigma_{i}}$ was proved in part (i).

Theorem 2.6. If $p \in D D F$, then for all $i \geq 1,(p)^{\sigma_{i}} \in D D F$.
Proof. First note that the definitions and lemmas about ($a \circ b$)-DDF in Theorem 2.4 apply to the simpler situation of $D D F$ as well. Namely, for $p \in D D F$ write $|p|$ for the $D D F$ representation of p, and let, for $p, q \in D D F, q \ll p$ if either p is an x_{k} and $q \prec p$ or $|p|=p_{0} p_{1} \cdots p_{n}$ for some $n>0$ and $q \preceq p_{0} \cdots p_{n-1}$ and let $p \sqsupset q$
($p, q \in D D F$) hold if one of the following holds:
(i) $p \gg q$.
(ii) $|p|=p_{0} p_{1} \cdots p_{n},|q|=p_{0} p_{1} \cdots p_{n-1} q_{n} \cdots q_{k-1} * q_{k}$, with $p_{n} \sqsupset q_{n}$ and $\left(p_{n} \circ q_{n}\right)$ $\ll p_{0} \cdots p_{n-1}$.
(iii) $|p|=p_{0} p_{1} \cdots p_{n-1} \circ p_{n}, p_{n} \sqsupset q, p_{n} \circ q \ll p_{0} p_{1} \cdots p_{n-1}$.

Then, as before, if $p, q, s \in D D F, p \sqsupset q \succ s$, then $p \sqsupset s$, and $p \sqsupset q$ implies that $p q$, $p \circ q \in D D F$ and $p q \sqsupset p$.

Lemma. If $p \in D D F, p \prec x_{k} x_{k+1}$, then $p \sqsubset x_{k} x_{k+1}$.
Proof. If $p \preceq x_{k}$, then $p \ll x_{k} x_{k+1}$. The other case is $p=x_{k} r_{0} \cdots r_{n-1} * r_{n}$, with $r_{0} \prec x_{k+1}$; then $r_{0} \sqsubset x_{k+1}$ and $\left(x_{k+1} \circ r_{0}\right) \ll x_{k}$.

Fix i in the theorem, and let $a=x_{i-1}, b=x_{i}$.
We prove by induction on $p \in D D F$ that $(p)^{\sigma_{i}} \in D D F$. If p is an x_{k} we are done, so let $|p|=p_{0} p_{1} \cdots p_{n-1} * p_{n}$, for $n>0$. If p_{0} is any variable other than a, then by the induction hypothesis and Theorem $2.5(\mathrm{i}),\left|p^{\sigma_{i}}\right|=\left|p_{0}^{\sigma_{i}}\right| \cdots\left|p_{n-1}^{\sigma_{i}}\right| *\left|p_{n}^{\sigma_{i}}\right|$.

So suppose $p_{0}=a$, then

$$
\begin{equation*}
(p)^{\sigma_{i}}=a b\left(p_{1}\right)^{\sigma_{i}} \cdots\left(p_{n-1}\right)^{\sigma_{i}} *\left(p_{n}\right)^{\sigma_{i}} \tag{*}
\end{equation*}
$$

where by Theorem $2.5(\mathrm{i})$ the sequence $(a b)\left(p_{1}\right)^{\sigma_{i}} \cdots\left(p_{n-1}\right)^{\sigma_{i}} *\left(p_{n}\right)^{\sigma_{i}}$ is ($a b$)-decreasing normal. We have $L\left(p_{1}\right) \preceq b$; if $L\left(p_{1}\right) \prec b$, then by Lemma 2.3(ii), $\left(p_{1}\right)^{\sigma_{i}} \prec a$ so the sequence ($*$) is a-decreasing normal, as desired.

So assume $p_{1}=b t_{1} \cdots t_{m-1} * t_{m}$, then $\left|p_{1}^{\sigma_{i}}\right|=a\left|t_{1}^{\sigma_{i}}\right| \cdots\left|t_{m-1}^{\sigma_{i}}\right| *\left|t_{m}^{\sigma_{i}}\right|$. Since $t_{1} \prec b$, Lemma 2.3(ii) gives $t_{1}^{\sigma_{i}} \prec b$, whence $p_{1}^{\sigma_{i}} \prec a b$. By the Icmma, then, $a b \sqsupset\left(p_{1}\right)^{\sigma_{i}}$.

Thus the statement which immediately preceeds the lemma may be iterated n times on the expression (*), to obtain that $p^{\sigma_{i}} \in D D F$.

Theorem 2.7. The maps $u \rightarrow u^{\sigma_{i}}$, restricted to $D D F$, induce a partial group action of B_{∞} on DDF.

Proof. We have that $x_{k}^{\sigma_{i} \sigma_{t+1} \sigma_{t}}$ and $x_{k}^{\sigma_{i+1} \sigma_{i} \sigma_{i+1}}$ equal

$$
\begin{array}{ll}
x_{k}\left(x_{k+1} x_{k+2}\right) & (k=i-1) \\
x_{k-1} x_{k} & (k=i) \\
x_{k-2} & (k-i+1) \\
x_{k} & \text { (otherwise) }
\end{array}
$$

and for $j>i+1, x_{k}^{\sigma_{i} \sigma_{i}}$ and $x_{k}^{\sigma_{i} \sigma_{i}}$ are

$$
\begin{array}{ll}
x_{k}^{\sigma_{i}} & (k=i-1, i) \\
x_{k}^{\sigma_{i}} & (k=j-1, j) \\
x_{k} & \text { (otherwise) }
\end{array}
$$

By Theorem 2.5(i) the maps $u \rightarrow u_{i}^{\sigma_{i}^{-1}}$, restricted to $D D F$, are one-to-one. Let w be a braid word $\sigma_{i_{0}}^{ \pm 1} \sigma_{i_{1}}^{ \pm 1} \cdots \sigma_{i_{m}}^{ \pm 1}$. Define the domain of w to be the set of $d \in$
$D D F$ such that for each $j \leq m,\left(\left((d)^{\sigma_{\tau_{0}}^{ \pm 1}}\right)^{\sigma_{11}^{ \pm 1}} \cdots\right)^{\sigma_{i_{j}}^{ \pm 1}}$ exists and lies in $D D F$. And for $d \in$ domain w write $d^{w}=\left(\left((d)^{\sigma_{01}^{ \pm 1}}\right) \cdots\right)^{\sigma_{i m}^{+1}}$. We need to check that if w and w^{\prime} are equivalent braid words, $d \in$ domain $w \cap$ domain w^{\prime}, then $d^{w}=d^{w^{\prime}}$. It suffices to show there is a derivation of the equivalence of w and w^{\prime}, with $d \in \operatorname{dom} w^{\prime \prime}$ for every intermediate word $w^{\prime \prime}$ in the derivation. This follows from Garside [14]. Namely, let $w \xrightarrow{*} v$ mean that v can be obtained from w via applications of the rewriting rules $\sigma_{i}^{-1} \sigma_{i} \xrightarrow{*} \emptyset, \sigma_{i} \sigma_{i}^{-1} \stackrel{*}{\leftrightarrow} \emptyset, \sigma_{i} \sigma_{j} \stackrel{*}{\leftrightarrow} \sigma_{j} \sigma_{i}(i>j+1)$, and $\sigma_{i} \sigma_{i+1} \sigma_{i} \stackrel{*}{\leftrightarrow} \sigma_{i+1} \sigma_{i} \sigma_{i+1}$. Note that, by Theorems $2.5(\mathrm{i})$ and 2.6 , if $w \xrightarrow{*} v$, then domain $w \subseteq$ domain v. So it suffices to show that if w and w^{\prime} are equivalent, then there is a v with $w^{*}, v, w^{\prime *} v$. Garside defines $\Delta_{n}=\sigma_{1}\left(\sigma_{2} \sigma_{1}\right)\left(\sigma_{3} \sigma_{2} \sigma_{1}\right) \cdots\left(\sigma_{n-1} \cdots \sigma_{3} \sigma_{2} \sigma_{1}\right)$, and shows for $i<n$ that $\sigma_{i} \Delta_{n} \stackrel{*}{\leftrightarrow} \Delta_{n} \sigma_{n-i}$, $\sigma_{i}^{-1} \Delta_{n} \xrightarrow{*} \Delta_{n} \sigma_{n-i}^{-1}$, and $\sigma_{i} \xrightarrow{*} \Delta_{n} c$ for some negative braid word c (i.e., a word in $\left\{\sigma_{m}^{-1}\right.$: $1 \leq m<n\}$). He then derives that for w equivalent to w^{\prime} there is a v (of the form $d c, d$ a positive word, c a negative word) with $w \xrightarrow{*} v, w^{\prime} \xrightarrow{*} v$, as desired.

3.

We recall the definitions [6] of the linear ordering $<$ on B_{∞}. Let \mathscr{C} be a left distributive (or Σ) algebra. Let \mathscr{C}^{ω} be the set of sequences $\vec{c}=\left\langle c_{0}, c_{1}, \ldots, c_{n}, \ldots\right\rangle$ from \mathscr{C}. Then the action of a braid generator on $\mathscr{C}^{(1)}$,

$$
\left\langle c_{0}, \ldots, c_{i-1}, c_{i}, \ldots, c_{n}, \ldots\right\rangle^{\sigma_{i}}=\left\langle c_{0}, \ldots, c_{i-1} c_{i}, c_{i-1}, \ldots, c_{n}, \ldots\right\rangle
$$

extends, when \mathscr{C} satisfies left cancellation, to a partial action of B_{∞} on $\mathscr{C}^{(1)}$ (again, Garside's result is used in seeing that \vec{c}^{x}, when defined, is unique). We use the same notation \vec{c}^{x}, p^{α} for this action and the one defined in the last section; since they are on different sets, no confusion should arise.

Define for $\vec{c}, \vec{d} \in \mathscr{C}^{\omega}, \vec{c}<_{\text {Lex }} \vec{d}$ if there is an i with $c_{i} \neq d_{i}$, and for the least such $i, c_{i}<{ }_{\mathrm{L}} d_{i}$.

Theorem 3.1 (Dehornoy [6]). Let \mathscr{C} be an \mathscr{A}_{κ} or \mathscr{P}_{κ}.
(i) For any $\alpha_{0}, \ldots, \alpha_{n} \in B_{\infty}$ there is a $\vec{c} \in \mathscr{C}^{\infty}$ such that for all $i \leq n$, $(\vec{c})^{\alpha_{1}}$ exists.
(ii) Define $\alpha<\beta \Leftrightarrow$ for somelany \vec{c} such that \vec{c}^{α} and \vec{c}^{β} exist, $\vec{c}^{x}<_{\text {Lex }} \vec{c}^{\beta}$; then $<$ is a linear ordering on B_{∞} (which is independent of \mathscr{C}).
(iii) $<$ is the unique linear ordering on B_{∞} such that for all $\alpha, \beta, \gamma \in B_{\infty}, \beta<$ $\gamma \Leftrightarrow \alpha \beta<\alpha \gamma$, and such that $\sigma_{i} \alpha>\beta$ if α and β are in the algebra generated by $\left\{\sigma_{j}: j>i\right\}$.
(iv) $\beta<\gamma \Leftrightarrow \beta^{-1} \gamma>\varepsilon$, where $\alpha>\varepsilon \Leftrightarrow \alpha$ can be expressed by a braid word in which the generator with least subscript occurs only positively.

Part (iv) is implicit in the construction in [6, Lemma 7.1].
We will work with the case $\mathscr{C}=\mathscr{P}_{\omega}$. Let $\vec{x}=\left\langle x_{0}, x_{1}, \ldots, x_{n}, \ldots\right\rangle$ be the sequence of generators of \mathscr{P}_{ω}. For $\alpha \in B_{\infty}, \vec{p} \in\left(\mathscr{P}_{\omega}\right)^{\omega}$ such that $(\vec{p})^{\alpha}$ exists, let $\left((\vec{p})^{\alpha}\right)_{k}$ be
the k th coordinate of $(\vec{p})^{x}$. Let Rev : $B_{\infty} \rightarrow B_{\infty}$ be the reversing antiautomorphism: $\operatorname{Rev}\left(\sigma_{i}^{ \pm 1}\right)=\sigma_{i}^{ \pm 1}, \operatorname{Rev}(\beta \gamma)-(\operatorname{Rev} \gamma)(\operatorname{Rev} \beta)$.

The following was also noted, for the case of the action of B_{∞} on the free group under conjugation, in Larue [19].

Lemma 3.2. If $\alpha \in B_{\infty}^{+}$, then for all $k,\left((\vec{x})^{x}\right)_{k}=\left(x_{k}\right)^{\operatorname{Rev} x}$.
Proof. The lemma holds if α is a σ_{i}. Suppose $\alpha=\beta \sigma_{i}$ where $\beta \in B_{\infty}^{+}$and the lemma holds for β. Then $(\vec{x})^{\alpha}=\left((\vec{x})^{\beta}\right)^{\sigma_{i}}=\left\langle x_{0}^{\operatorname{Rev} \beta}, x_{1}^{\operatorname{Rev} \beta}, \ldots\right)_{i}^{\sigma_{i}}=\left\langle x_{0}^{\operatorname{Rev} \beta}, \ldots, x_{i-2}^{\operatorname{Rev} \beta}, x_{i-1}^{\operatorname{Rev} \beta} x_{i}^{\operatorname{Rev} \beta}\right.$, $\left.x_{i-1}^{\mathrm{Rcv} \beta}, x_{i+1}^{\mathrm{Rcv} \beta}, \ldots\right\rangle$. If $n \neq i-1, i$, then $x_{n}^{\mathrm{Rcv} \beta}=x_{n}^{\sigma, \mathrm{Rcv} \beta}=x_{n}^{\mathrm{Rev} \alpha}$, and $x_{i-1}^{\mathrm{Rcv} \beta} x_{i}^{\mathrm{Rcv} \beta}=$ $\left(x_{i-1} x_{i}\right)^{\operatorname{Rev} \beta}=x_{i-1}^{\sigma_{i} \operatorname{Rev} \beta}=x_{i-1}^{\operatorname{Rev} \alpha}$. Finally, $x_{i-1}^{\operatorname{Rev} \beta}=x_{i}^{\sigma_{i} \operatorname{Rev} \beta}=x_{i}^{\operatorname{Rev} x}$.

The proof works for any $\alpha \in B_{\infty}$ such that $(\vec{x})^{x}$ exists, but this improvement is vacuous by the following result due to Larue.

Theorem 3.3 (Larue [20]). For $2 \leq N \leq \infty, \alpha \in B_{N},\left\langle x_{i}: i<N\right\rangle$ the sequence of generators of $\mathscr{P}_{N},\left\langle x_{i}: i<N\right\rangle^{\alpha}$ exists if and only if $\alpha \in B_{N}^{+}$.

The faithfulness of the action of B_{∞} on $(\mathscr{C})^{\omega}$ follows from Theorem 3.1(i) and (ii). We derive the faithfulness of the action of B_{∞} on $D D F$.

Theorem 3.4. If $\alpha, \beta \in B_{\infty}, \alpha \neq \beta$, then for some $d \in D D F, d^{\alpha} \neq d^{\beta}$.
Proof. We have $\operatorname{Rev} \alpha \neq \operatorname{Rev} \beta$. Let m be such that $\alpha, \beta \in B_{m}$. Let $\Delta=\Delta_{m}\left(=\operatorname{Rev} \Delta_{m}\right.$ [14]). Then pick n sufficiently large so that $\operatorname{Rev} \alpha \cdot \Delta^{n}, \operatorname{Rev} \beta \cdot \Delta^{n} \in B_{m}^{+}$. Namely [14], for each $i<m, \Delta$ can be written as $\sigma_{i} \cdot \gamma$ for some $\gamma \in B_{m}^{+}$. That, together with $\sigma_{f} \Delta=\Delta \sigma_{m-\prime}(1 \leq \ell \leq m-1)$, gives the existence of such an n. Then by Theorem $3.1($ ii $),(\vec{x})^{\operatorname{Rev} x \cdot d^{n}} \neq(\vec{x})^{\operatorname{Rev} \beta \cdot d^{\prime \prime}}$. So by Lemma 3.2 there is an i with $x_{i}^{d^{\prime \prime} \cdot \alpha} \neq x_{i}^{d^{\prime \prime} \cdot \beta}$. Take $d=x_{i}^{d^{n}}$ (a member of $D D F$ by Theorem 2.6).

Theorem 3.5. If $\alpha \in B_{\infty}, \beta \in B_{\infty}^{\prime}, \beta \neq \varepsilon$, then $\beta \alpha>\alpha$.
Proof. It suffices to show that for all $i, \sigma_{i} \alpha>\alpha$. First we show it when $\alpha \in B_{\infty}^{+}$. By Theorem 3.1(ii) there is a least k with $u=\left((\vec{x})^{x}\right)_{k} \neq\left((\vec{x})^{\sigma_{i} x}\right)_{k}=v$, and either $u<_{\mathrm{L}} v$ or $v<_{\mathrm{L}} u$; we want to show the former, it will suffice to show $u \preceq v$. We have $u=\left(x_{k}\right)^{\operatorname{Rev} \alpha}, v=\left(x_{k}\right)^{\operatorname{Rev} x \cdot \sigma_{i}}$ by Lemma 3.2. By applications of Theorem 2.6, $x_{k}^{\operatorname{Rev} \alpha} \in D D F$. So $u \preceq v$ by Theorem 2.5(ii), giving the theorem when $\alpha \in B_{\infty}^{+}$.

For $\alpha \in B_{\infty}$, pick, as in Theorem 3.4, m and n, with $m>i$, such that for $\Delta=\Delta_{m}$ we have $\Delta^{n} \alpha \in B_{\infty}^{+}$. It suffices by Theorem 3.1 (iii) to show that $\Delta^{n} \sigma_{i} \alpha>\Delta^{n} \alpha$. Assuming without loss of generality that n is even, then $\Delta^{n} \sigma_{i} \alpha=\sigma_{i} \Delta^{n} \alpha$, and we are done by the first part of the theorem.

For $\beta, \alpha \in B_{\infty}^{+}$say that β is a proper subsequence of α if $\alpha=\delta_{0} \delta_{1} \cdots \delta_{n}$ for some sequence of generators δ_{i} and for some $0 \leq i_{0}<\cdots<i_{f} \leq n$ with $\ell<n$, $\beta=\delta_{i_{0}} \delta_{i_{1}} \cdots \delta_{i,}$.

Corollary 3.6. If $\beta, \alpha \in B_{\infty}^{+}, \beta$ a proper subsequence of α, then $\beta<\alpha$.
Proof. (By Theorems 3.5 and 3.1(iii), by induction on the unique n such that α is the product of n many generators.). Since $\varepsilon<\sigma_{i}$, the atomic case holds. If β is an initial segment of α, we are done. So suppose for some least r that $i_{r}>r$. Then $\delta_{i_{r}} \cdots \delta_{i} \leq \delta_{r+1} \delta_{r+2} \cdots \delta_{n}$ (by induction) $<\delta_{r} \delta_{r+1} \cdots \delta_{n}$ (Theorem 3.5). Multiplying on the left by $\delta_{0} \cdots \delta_{r-1}$ gives $\beta<\alpha$.

By Theorem 3.5 the linear ordering < extends the partial ordering on B_{∞} used by Elrifai and Morton in [12] (they defined $\beta<\alpha \leftrightarrow$ for some $\gamma, \delta \in B_{\infty}^{+}$with at least one of γ, δ different from $\varepsilon, \alpha=\gamma \beta \delta$).

Corollary 3.7. For N finite, B_{N}^{+}is well ordered under $<$.
Proof. Else there would be a sequence $\alpha_{0}>\alpha_{1}>\cdots>\alpha_{n}>\cdots$ with $\alpha_{j}=$ $\delta_{j, 0} \delta_{j, 1} \cdots \delta_{j, n}$, each $\delta_{j, m} \in\left\{\sigma_{1}, \ldots, \sigma_{N-1}\right\}$. Applying (a special case of) Higman's theorem [15], there exist $j<k$ with $\delta_{j, 0} \cdots \delta_{j, n_{i}}$ a subsequence of $\delta_{k, 0} \cdots \delta_{k, n_{k}}$, contradicting Corollary 3.6.

Burckel [3] has recently given a tree representation for the members of B_{N}^{+}, showing that the ordinal of B_{N}^{+}is $\omega^{\omega^{\nu-2}}$.

Theorems 3.1 (ii), 3.3, and Corollary 3.7 imply the following result.
Corollary 3.8. For $2 \leq N<\infty,\left\langle x_{i}: i<N\right\rangle$ the sequence of generators of \mathscr{P}_{N}, $\left\{\left\langle x_{i}: i<N\right\rangle^{\alpha}: \alpha \in B_{N}\right.$ and $\left\langle x_{i}: i<N\right\rangle^{\alpha}$ exists $\}$ is well ordered under $<_{\text {Lex. }}$.

References

[1] E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ, Hamburg 4 (1925), 47-72.
[2] E. Brieskorn, Automorphic sets and braids and singularities, in: Braids, ed., Contemporary Math, Vol. 78, (American Math. Soc., 1988) 45-117.
[3] S. Burckel, Thesis, Université de Caen, 1994.
[4] P. Dehornoy, Free distributive groupoids, J. Pure Appl. Algebra 61 (1989) 123-146.
[5] P. Dehornoy, Sur la structure des gerbes libres, Comptes-rendu de l'Acad. des Sciences de Paris 309-I (1989) 143-148.
[6] P. Dehornoy, Braid groups and left distributive structures, Trans. Amer. Math. Soc. 345 (1994) 115150.
[7] P. Dehornoy, A canonical ordering for free left distributive magmas, Proc. Amer. Math. Soc. 122 (1994) 31-36.
[8] R. Dougherty, Critical points in an algebra of elementary embeddings, Ann. Pure Appl. Logic 65 (1993) 211-241.
[9] R. Dougherly and T. Jech, Finite left distributive algebras and embedding algebras, Adv. Math.
[10] A. Drapal, Homomorphisms of primitive left distributive groupoids, Comm. Algebra 22-7 (1994) 2579-2592.
[11] A. Drapal, Persistence of cyclic left distributive algebras, J. Pure. Appl. Algebra 105 (1995) 137-165.
[12] E.A. Elrifai and H.R. Morton, Algorithms for positive braids, Quart. J. Math. Oxford 45 (2) (1994) 479-497.
[13] R. Fenn and C. Rourke, Racks and links in codimension 2, J. Knot Theory and its ramifications (1992) 343-406.
[14] F.A. Garside, The braid group and other groups, Quart. J. Math. Oxford 20 (2) (1969) 235-254.
[15] G. Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. 2 (1952) 326-336.
[16] D. Joyce, A classifying invariant of knots: the knot quandle, J. Pure Appl. Algebra 23 (1982) 37-65.
[17] A. Kanamori, The Higher lnfinite: Large Cardinals in Set Theory from Their Beginnings (Springer, Berlin 1994).
[18] L. Kauffman, Knots and Physics (World Scientific, Singapore, 1991) Chapter 1-13.
[19] D. Larue, Braid words and irreflexivity, Algebra Universalis 31 (1994) 104-112.
[20] D. Larue, Thesis, University of Colorado, 1994.
[21] R. Laver, The left distributive law and the freeness of an algebra of elementary embeddings, Adv. Math. 91 (1992) 209-231.
[22] R. Laver, A division algorithm for the free left distributive algebra, Proc. Helsinki 1990 ASL meeting (Springer, Berlin, 1993) 155-162.
[23] R. Laver, On the algebra of elementary embeddings of a rank into itself, Adv. Math. 110 (1995) 334-346
[24] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory (Springer, New York, 1977) 157.
[25] D.A. Martin, Infinite games, Proc. International Congress of Mathematicians, Helsinki, 1978, 73-116.
[26] D.A. Martin, Woodin's proof of PD, handwritten notes, 1985.
[27] S. Matveev, Distributive groupoids in knot theory, Math. USSR-Sb. (1982) 73-83.
[28] J. Steel, On the well-foundedness of the Mitchell order, J. Symbolic Logic. 58 (1993) 931-940.
[29] M. Takesaki, Abstractions of symmetric functions, Tohuku Math. J. 49 (1943) 143-207 (Japanese); Math. Reviews 9, p. 8.
[30] F. Wehrung, Gerbes primitives, CRAS Paris 313 (1991) 357-362.

[^0]: ${ }^{1}$ Supported by NSF Grant DMS 9303217.

